

High Time Resolution Astrophysics and Extremely Large Telescopes

Andy Shearer Centre for Astronomy NUI, Galway Ireland on behalf of the Opticon HTRA network

Thursday, May 28, 2009

What objects?

Topics at the Galway and Edinburgh HTRA workshops in 2006 and 2007 - timescales minutes to microseconds

ESO- ELT May 20

Binary Systems CVs LMXBs **HMXBs Neutron Stars** Pulsars Magnetars **Isolated NS Normal Stars** Asteroseismology **Stellar Pulsations Brown Dwarfs Transients and Occulations** AGN

Most of these * are optical objects * show stochastic behaviour

* are effectively point sources

What objects?

Topics at the Galway and Edinburgh HTRA workshops in 2006 and 2007 - time scales minutes to microseconds

Binary Systems CVs **LMXBs HMXBs Neutron Stars** Pulsars Magnetars **Isolated NS Normal Stars** Asteroseismology **Stellar Pulsations Brown Dwarfs Transients and Occulations** AGN

 They are examples of *Extreme Physics*

- * eg pulsars
 - ★ magnetic fields > 10¹⁵ G
 - * density ~ 10^{15} g / cm³
 - * surface temperature ~ 10^{6} K
 - * plasma Lorentz factors $\gamma > 10^9$
 - ★ GR effects ~ 25% at surface
 - neutron star structure
 - ★ Fe atmosphere
 - Neutrionic 'mantle' and crust
 - * Inner region free quarks???

Science drivers and time scales

		Time-scale (now)	Time-scale (ELT era)
Stellar flares and pulsations		Seconds/ Minutes	10-100ms
Stellar surface oscillations	White Dwarfs Neutron Stars	1-1000 μsec	1-1000 μsec 0.1 μsec
Close Binary	Tomography	100ms++	10 ms+
Systems	Eclipse in/egress	10ms+	< 1ms
(accretion and	Disk flickering	10ms	< 1ms
turbulence)	Correlations	50ms	<1ms
	(e.g. X-ray & optical)		
Pulsars	Magnetospheric	1μsec-100ms	nsec(?)
	Thermal	10 ms	<ms< td=""></ms<>
AGN		Minutes	Seconds(?)
			ENTRE
	ESO May 200)9	

Ollscoil na bÉireann, Gaillimb Thursday, May 28, 2009

National University of Ireland, Galway

HTRA usage - UltraCam

E THE GALWA

5

Table 2. Breakdown of the percentage of time spent observing different $cl \epsilon$ of astronomical object with ULTRACAM on the WHT and VLT. The right-hand column provides references to some of the ULTRACAM papers published in each area

Target	Time	References
Cataclysmic variables/accreting white dwarfs	22%	[24], [10]
Black-hole X-ray binaries	19%	[36], [37]
sdB stars/asteroseismology	15%	[1], [16]
Kuiper belt object occultations	11%	[34]
Eclipsing white-dwarf/red-dwarf binaries	10%	[5], [29]
Pulsars	5%	[8], [7]
Ultra-compact binaries	4%	[3]
Flare stars	4%	[28]
Extrasolar planet transits	3%	
Isolated white dwarfs	2%	[38]
Isolated brown dwarfs	2%	[25]
Gamma-ray bursts	1%	[45]
Active galactic nuclei/Blazars	1%	
Titan/Pluto occultations	1%	[11], [48]

from Dhillon, 2007 in High-Time Resolution Astrophysics, ASSL, vol 351

HTRA is primarily a detector and data problem

Instrument	Detector	$Photometry^{@}$	$\operatorname{Polarimetry}^*$	Spectroscopy
$Quanteye^1$	100 SPAD	ps-ns	No	No
$Aqueye^2$	4 SPAD	$\mathrm{ns}{-}\mu\mathrm{s}$	AFOSC	AFOSC
$GASP^3$	GaAs Image Tube	$\mathrm{ns}{-}\mu\mathrm{s}$	Full Stokes	possibly
${ m Salticam}^4$	2x1 CCD	100 ms-secs	No	UBVRI
RSS^5	3x1 CCD	$50 \mathrm{\ ms}{-}1.6 \mathrm{\ s}$	L, C, SP, FS	VPH, filters
ULTRACAM ⁶	3 CCD	$0.237 \mathrm{s}{-10} \mathrm{s}$	No	3 colour
${ m LuckyCam}^7$	L3CCD	> 40 frames/s	No	filters
$\mathrm{TRIFFID}^{8}$	3 APD, L3CCD	$1 \ \mu s$	No	3 colour
OPTIMA ⁹	8 APD	$1 \ \mu s$	\mathbf{L}	No
$MPPP^{10}$	PSD	$1 \ \mu s$	Full Stokes	$4 \operatorname{colour}$
$FUSP^{11}$	PSD	$1 \ \mu s$	L, IP, SP	$4 \operatorname{colour}$
$IMPOL^{12}$	CCD	12 s frame rate	Full Stokes	No
$ZIMPOL^{13}$	CCD	$34~\mathrm{ms}$ frame rate	Full Stokes	No
LRIS $(Keck)^{14}$	CCD	72 ms	L, C, $IP+SP$	Grism
FORS2 $(VLT)^{15}$	CCD	$2.3 \mathrm{ms}{-}2.3 \mathrm{s}$	No, FORS1	Grism, VPH
FOCAS (Subaru) ¹	.6 CCD	0.1s	L, C, SP	Grism, VPH
$S-CAM3^{17}$	$_{ m STJ}$	$5 \ \mu s$	No	Energy resolving, R 8–13
$\rm UCTPol^{18}$	photomultiplier tube	$1 \mathrm{ms}$	L, C	UBVRI
$AcqCam^{19}$	CCD	$6-60 \mathrm{s}$	No	UBVRI
$ISIS^{20}$	CCD	$0.2{-}15~\mathrm{s}$	IP, SP	dichroics, blaze
Argos^{21}	CCD	$1 \mathrm{s}$	No	No
TES array ²²	TES	$30 \mu { m s}$	$\mathrm{IP},\mathrm{LP},\mathrm{SP}$	Energy resolving, R \sim 20

from Ryan and Redfern, 2007 in High-Time Resolution Astrophysics, ASSL, vôl 351 ESO- ELT May 2009

National University of Ireland, Galway Ollscoil na bÉireann, Gaillimb

42 m ELT stochastic limits - seeing limited

TOP GALWAT

Table 2. Photon rates from a point source (1 arcsec assumed) collected by a 42 m telescope in V band, and integrating times for three detectors for S/N of 10

m_v	Photon]	Rates ph s ^{-1}	Detector	$10 \sigma E$	xposure T	$\frac{1}{3}$
	Telescope	Focal Plane	Cts s	GaAs' S	PAD array	⁷⁸ L3CCD"
18	$510,\!000$	410,000	290,000	$570~\mu{ m s}$	$370~\mu{ m s}$	$220~\mu{ m s}$
19	$200,\!000$	$163,\!000$	$110,\!000$	$1.5 \mathrm{ms}$	$1 \mathrm{ms}$	$580~\mu{ m s}$
20	80,000	66,000	$45,\!000$	$4.2 \mathrm{ms}$	$2.8 \mathrm{ms}$	$1.6 \mathrm{ms}$
21	$32,\!000$	26,000	$18,\!000$	$14 \mathrm{ms}$	$9 \mathrm{ms}$	$5 \mathrm{ms}$
22	$13,\!000$	$10,\!000$	$7,\!000$	$5 \mathrm{ms}$	$4 \mathrm{ms}$	$2 \mathrm{ms}$
23	$5,\!100$	4,100	$2,\!800$	0.3	0.2	0.1
24	$2,\!000$	$1,\!600$	$1,\!100$	1.4	1.0	0.6
25	800	650	460	8.3	5.7	3.2
26	320	260	180	51	35	20
27	130	100	72	320	220	120
28	50	41	29	$2,\!000$	$1,\!400$	780
29	20	16	11	$12,\!000$	8,700	$4,\!900$
30	8	7	5	$79,\!000$	$5,\!500$	$31,\!000$
adap	oted from R	yan & Redfer	n, HTRA, A	SSL, 351,	229	7

Pulsars - Extreme Case for HTRA

- Periodicities
- 1ms to ~10 seconds
- Time resolution required
 - < 1 microsecond (< 10 objects)</p>
 - < 1 ms (< 100 objects)
 - < 1 sec (~1700 objects)</p>
- optical observations limited to seven objects pulsed and roughly twice as many integrated
- polarisation and spectra also important

Shortest time scale measured to date <10ns from radio observations - Hankins et al 2003, Nature, 422, 141

The fastest time-scale - radio observations

HTRA Science Case I - Pulsars

What do we know

University of Ireland, Galway

- pulsars are most likely magnetospherically active neutron stars
 - "probably the only point of agreement between all these theories is the association of pulsars with magnetized, rotating neutron stars" - Roger Blandford 1998

What we don't know

- high energy emission mechanism
 - synchrotron / curvature
- where the plasma comes from
- population statistics
 - how many radio pulsars?
 - how many AXPs/SGRs?
 - how many radio quiet?
 - pulsar SNR association?
 - beaming geometry?
- what happens during type II supernova?
- what are RRATs?
- what is the emission mechanism

HTRA Science Case I - Pulsars

What do we know

xnal University of Ireland. Galway

- pulsars are most likely magnetospherically active neutron stars
 - "probably the only point of agreement between all these theories is the association of pulsars with magnetized, rotating neutron stars" - Roger Blandford 1998

What we don't know

- high energy emission mechanism
 - synchrotron / curvature
- where the plasma comes from
- population statistics
 - how many radio pulsars?
 - how many AXPs/SGRs?
 - how many radio quiet?
 - pulsar SNR association?
 - beaming geometry?
- what happens during type II supernova?
- what are RRATs?
- what is the emission mechanism

There are only 5 known 'normal' pulsars with pulsed magnetospheric optical emission

	m _B	Period	B		
		(ms)	VLT	EELT	
			photon	ons/rotation	
Crab	≈ 17	33	3,300	80,000	
PSR 0540-69	≈ 23	50	17	410	
Vela	≈ 24	89	12	440	
PSR 0656+14	≈ 25.5	385	13	290	
Geminga	≈ 26	237	5	120	
Crab like pulsar i	in M31			~1	
	- :	1			

The thermal signature is generally lower - see for example Kargaltsev et al, ApJ, 625, 307 (2005)

The E-ELT will increase the number of pulsars which can be studied in detail in the optical/NIR from 1 to 20+.

Anomalous X-Ray Pulsars

- Slow Period ~5-12 seconds
- Very high magnetic field >10¹³G
- Optical counterparts
 - Hulleman et al, Nature, 408, 689 2000
 - too faint for an accretion disk R ~ 25
 - magnetar?
 - Optical pulsations detected for two AXPs
 - e.g 4U 0142+42
 - optical pulsed fraction 29% higher than in X-rays

A debris disk around an isolated young neutron star

Zhongxiang Wang¹, Deepto Chakrabarty¹ & David L. Kaplan¹

Figure 3 | Optical/infrared spectral energy distribution of 4U 0142+61. The vertical axes are both scaled by frequency ν . The left axis shows ν -scaled flux per unit frequency, νF_{ν} ; the right axis shows ν -staled luminosity per ESO-ELI May 2009

Rotating RAdio Transients -RRATs

- Radio Transient Sources
- Parkes survey McLaughlin et al, Nature, 439, 817 (2006)
- pulsar origin(?)
- 2nd highest brightness temperature after GRPs
- bursts last 10-30 ms and repeat every 4 minutes to 4 hours
- Period ranges
 - 0.4 to 6.8 seconds
- Stochastic limit, V~22

HTRA Science Case II Close Binary Systems

X-ray-Optical cross-correlations observed by UltraCam and Optima

Shown are UltraCam observations of the black-hole accretor GX339-4 - Gandhi et al (2008)

Time scales < 1 sec Optical Autocorrelation indicated synchrotron emission from a possible jet structure rather than being driven by X-ray reprocessing.

GX339-4 is reasonably bright V~17. Other objects considerably fainter - E-ELT required to look at spectral variability

Thanks to Tom Marsh

Gravitational Wave Binaries

LISA should detect 1000s of close WD-WD binary systems

- Possible Sn 1a progenitors
- Orbital periods down to 100 s
- Faint
- HTRA as t~1-10 seconds and require low noise detectors
- Ideal HTRA ELT target
 - tidal interactions
 - galactic merger rate
 - are WD-WD systems Sn 1a progenitors?

Nelemans et al (2009) arXiv:0902.2923v1 [astro-ph.SR]

18

Gravitational Wave Binaries

2005

LISA should detect 1000s of close WD-WD binary systems

- Possible Sn 1a progenitors
- Orbital periods down to 100 s
- Faint
- HTRA as t~1-10 seconds and require low noise detectors
- Ideal HTRA ELT target
 - tidal interactions
 - galactic merger rate
 - are WD-WD systems Sn 1a progenitors?

Nelemans et al (2009) arXiv:0902.2923v1 [astro-ph.SR]

Gravitational Wave Binaries

LISA should detect 1000s of close WD-WD binary systems

- Possible Sn 1a progenitors
- Orbital periods down to 100 s
- Faint
- HTRA as t~1-10 seconds and require low noise detectors
- Ideal HTRA ELT target
 - tidal interactions
 - galactic merger rate
 - are WD-WD systems Sn 1a progenitors?

Nelemans et al (2009) arXiv:0902.2923v1 [astro-ph.SR]

18

Pulsar V=~29th magnitude at M31 distance

SNR ~ 0.7" diameter

Thursday, May 28, 2009

Thursday, May 28, 2009

Thursday, May 28, 2009

Normalised power

Thursday, May 28, 2009

EELT design and its implications for HTRA

Initially using Lund Euro50 - full end-end model, waiting for 42m E-ELT data covering more than 10 seconds

On-axis - fine for HTRA

PSF data from Lund telescope group

EELT design and its implications for HTRA

TOP GALWAT

10.0001 10.000

Initially using Lund Euro50 - full end-end model, waiting for 42m E-ELT data covering more than 10 seconds

On-axis - fine for HTRA

PSF data from Lund telescope group

ELT time series

Simulated Crab pulsar at LMC Distance

2 seconds data

0".01 aperture

HTRA Instrument for E-ELT

- Large percentage of time suitable for HTRA
 - VLT NAOS experience 20% of the time too fast for AO possibly higher
 - AO problems with non-photometric conditions
- Suggestions from the HTRA community
 - poor seeing / visitor instrument?
 - spectroscopy
 - polarisation
 - HTRA photometry
 - first light instrument?
 - E-ELT 4+ year build time?
 - off axis piggy back instrument for transients?

HTRA detector/instrument requirements

Primary Requirements

- Time resolution
 - -microseconds to a few seconds
 - -currently possible with EMCCDs, pnCCDs and APDs
- at least 64 x 64 array
- Polarisation sensitivity at 0.1% level
- Energy resolution broad narrow band
- Sensitive to stochastic and periodic signals
- Low, preferably zero, noise

Secondary Requirements

- Sub-microsecond temporal resolution
- Spectra R~5000

HTRA meetings

- "HTRA for the next decade" meeting in May 2010
 - probable venue Crete?