

Precision Astrometry with MICADO

Richard Davies

on behalf of

MPE Garching, Germany

MPIA Heidelberg, Germany

USM Munich, Germany

OAPD Padova (INAF), Italy

NOVA Leiden, Gronigen, Dwingeloo (ASTRON), Netherlands

LESIA Paris Observatory, France

MICADO: Multi-AO Imaging Camera for Deep Observations

Primary Imaging Field

- 53" across, 3mas pixels
- high throughput
- 4x4 HAWAII 4RG detectors
- ~20 filter slots

Xmas Tree Arm

- 1.5mas & 4mas pixels
- imaging & spectroscopy
- ~20 filter slots
- polarimetry
- [tunable filter (dual imager)]

Adaptive Optics Compatability

SCAO: yes, own module

GLAO: yes, but not optimised

LTAO: TBC

MCAO: yes, optimised

movable pick-off switches between

Primary field & Xmas Tree

Opto-Mechanics Overview

- imager: simple high-throughput reflective design using only fixed mirrors; optimised for photometric & astrometric precision
- cryostat 1.7m×1.9m, rotating diameter 2.3m; mounts underneath SCAO & MAORY

- Sensitivity & Resolution
- Precision Astrometry
- High throughput Spectroscopy
- ➤ Simple, Robust, Available early

- MICADO is optimized for imaging at the diffraction limit
- JHK sensitivity comparable to JWST
- may be improved by OH suppression (R&D effort)
- resolution of 6-10mas over 1arcmin field is unique (cf IRIS on TMT)
- photometry in crowded fields

Crowded Field Photometry: MICADO vs JWST

Resolution gives an effective sensitivity gain – cf. 3mag for MAD vs ISAAC

MICADO

JWST

- Sensitivity & Resolution
- Precision Astrometry
- High throughput Spectroscopy
- Simple, Robust, Available early

- to <50µas over full 1arcmin field
- 50μ as/yr = 10km/s at 40kpc
- multiple measurements leads to higher precision
- many systematic effects to correct but necessary SW is available
- bring precision astrometry into the mainstream
- effectively open up a new field of astrophysics

- Sensitivity & Resolution
- Precision Astrometry
- High throughput Spectroscopy
- Simple, Robust, Available early

- simple high-throughput slit spectroscopy
- ideal for compact sources
- 12mas (& 48mas) slits, R~3000
- reaches ABmag~24.5 (10σ) in 1 hr across JHK

for point sources:

- Sensitivity & Resolution
- Precision Astrometry
- High throughput Spectroscopy
- Simple, Robust, Available early

- MICADO philosophy is optical & mechanical simplicity
- leads directly to stability needed for astrometry & photometry
- exemplifies most unique features of E-ELT: resolution & sensitivity
- flexibility to work with different AO systems

Precision Astrometry with MICADO

with NACO we reach precision of ~0.5% of FWHM

- > Can we achieve this for MICADO?
- > What is the science?

Systematics

Fundamental Limit 34µas for S/N=100 (measurement noise)
Goal 50µas over 50" field: 1/1000000 precision

Sources of error Requirement

Instrument

Sampling pixel scale 3mas (less in crowded fields)

Instrument Distortions careful calibration to 0.01pix (30µas)

using a calibration mask

Plate scale & derotation low order → coordinate transform

Atmosphere

Achromatic differential refraction low order → coordinate transform

Chromatic differential refraction tunable ADC (10-20µas) or multi-colours

AO

Differential Tilt Jitter 270 μ as/ T½ [Ellerbroek 07] \rightarrow 'integrate it out'

statistically [cf Cameron+ 08]

NGS atmospheric effects low order → coordinate transform

PSF variations & asymmetries minimal PSF variation & good PSF model

Calibration Scheme

basic

- calibration mask

 polynomial + lookup table to remove stable high order effects & discontinuities

single epoch

- stars

 polynomial fit to remove low/mid-order effects that change during a sequence of observations

inter epoch

(for absolute reference because stars move)

- high-z galaxies

 polynomial fit on deep combined single epoch data sets to remove low order effects

High-z galaxies as Astrometric References

HST image of a z=2 galaxy

simulation at HST resolution

- ~25 galaxies to K<21.5 in MICADO field
- each galaxy has many clumps
- tests yield 60-80µas precision for a 10hr integration on a K=21.4 simulated galaxy
- with several galaxies, precision improves

MICADO's view

Astrometric Data Processing

Astro-WISE - the Astronomical Widefield Imaging System for Europe see http://www.astro-wise.org/

Astrometry SW has been tested and works

WFI tests

- accuracy of USNO reference catalogue 0.3" rms
- local solution (2nd order) performs astrometric correction on individual detectors
- global solution (3rd order) minimises differences between detectors
- final accuracy <0.05" rms

MICADO

- needs 1000x better precision
- but has 100x better resolution
- only relative astrometry
- higher order correction

McFarland, Deul, Valentijn, Verdoes, 08

Precision Astrometry: science

A few examples

Binary stars, planets, asteroids orbits & dynamical masses

narrow angle astrometry (EPICS)

Black Hole masses & the M_{BH}-σ_{*} relation galaxy nuclei: Galactic Center, M31, ... star clusters: intermediate mass black holes

Mass Distribution & Formation History of the Galaxy globular cluster motions motions of local group galaxies

wide angle astrometry (MICADO)

Dark Matter & Structure Formation motions of dwarf spheroidals

Precision Astrometry: science

Galactic Center

- A unique laboratory for exploring strong gravity around the closest massive black hole
- A crucial guide for: accretion onto black holes and
 - co-evolution of dense stars cluster and AGN

Observations at the diffraction limit of the VLT: the central 0.4"

A simulation showing what one can expect to see with MICADO

The central 0.1" will reveal many stars in close, fast orbits around the central black hole with measurable precession

Galactic Center

MICADO on E-ELT

sensitivity >5mag fainter, resolution & astrometry 5x better than NACO on VLT

The core of M31

- P1 & P2: apo- and peri- center of disk of old red stars
- P3: cluster of young stars, scale length 0.1"
- thin disk Keplerian models provide best fit; $M_{BH} = 1.4 \times 10^8 M_{sun}$

Bender et al. 05

The core of M31... and beyond

• distance ~100x GC, but BH mass ~35x more: proper motions similar magnitude

Keck's view MICADO's view

- determine the mass & location of black hole
- understand the kinematics & origin of eccentric disk of stars
- other galaxies also possible: Cen A, M_{BH}=5×10⁷M_{sun},
 - expect stellar velocities 1000km/s = 50µas/yr
 - can measure proper motions

Intermediate Mass Black Holes

Arches

M_{BH}~1000M_{sun}? (Portegies Zwart et al. 06) proper motion: 5.6mas/yr (Stolte et al. 08)

IRS 13 M_{BH} ~1300 M_{sun} ? (Maillard et al. 04)

Omega Cen: M_{BH}~10000M_{sun}?

Omega Cen: does it have a black hole?

Noyola+ 08

- used luminosity profile & I.o.s. dispersion
- isotropic spherical model yielded M_{BH}=4×10⁴M_{sun}
- considered radial anisotropy, but argued against it since model without BH required $\sigma_t/\sigma_r{<}0.67$

Omega Cen: does it have a black hole?

Andersen+ 09, van der Marel+ 09

- used >50000 (faint) stars, 4-yr baseline, individual errors ~100µas/yr
- proper motion dispersions along tangential & radial directions
- models account for small but significant anisotropy (pm_t/pm_r=0.983±.006)
 since isotropic models overpredict M_{BH}
- ➤ models with shallow cusp require M_{BH}~9×10³M_{sun}
- models with core profile (formally the best fit) require no central dark mass!

Intermediate Mass Black Holes with MICADO

Arches, Quintuplet, open clusters, globular clusters, etc.

- Milky Way has ~150 GCs
- Typical GC has central dispersion ~10km/s
- 10km/s is 50µas/yr at a distance of 40kpc
- This is ~10x distance to Omega Cen & covers large part of GC system
- Can measure proper motions on relatively short timescale

in a few years we can constrain masses of BHs at centres of GCs

- \triangleright impact on M_{BH} - σ_* relation
- dynamical evolution of GCs

internal proper motions:

- rotation, flattening and internal structure of GCs
- binary fraction: 50µas is sufficient to measure wobble for stars with a dark companion >0.5M_{sun} and separation >0.5AU out to 10kpc

Globular Cluster Proper Motions

Globular Cluster Proper Motions

Decontamination for studying stellar populations

separating cluster members from field stars e.g. NGC6397

Andersen+ 06:
"Observations just a few years apart allow decontamination of field objects from members in two globular clusters"

Globular Cluster Proper Motions with MICADO

cluster distances.

at 40kpc, full parallax displacement is 50µas cluster parallax can be measured directly (wrt background galaxies/QSOs)

cluster structure & evolution.

past & future orbit for GCs can be traced; passages through the disk or near to the Galactic Center will affect GC evolution & structure.

kinematic families

if GCs belong to several kinematic groups, this would imply that they were created during different events and at different times

stellar populations:

proper motions provide a clean way of separating cluster members from field stars & interlopers

Dwarf Spheroidal Internal Kinematics

- CDM predicts halos should be clumpy, with cuspy central density profiles;
- Dwarf spheroidal & clump mass functions should be similar;
- if observations do not uphold this, CDM structure formation would need to be modified, e.g. halo disruption by star formation & mass loss, WDM, etc.

Strigari+ 08: constant mass scale over 5 orders of magnitude in luminosity

- ➤ faintest dSph are the most dark matter dominated galaxies;
- ➤ is the lack of halos <10⁷M_{sun} within 300pc due to star formation feedback or suppression, or a lower limit to halo mass (dark matter candidates)?

Dwarf Spheroidal Internal Kinematics with MICADO

need to measure mass function of clumps, density profiles (core vs cuspy), & ansiotropy

- I.o.s. motions alone are not sufficient
- need proper motions to measure radial/tangential anisotropy & break degeneracy with mass scaling

Strigari+ 07:

5× accuracy by adding proper motions of 200 stars to 5km/s accuracy

this is possible with MICADO:

- ➤ RGB stars in dSPh have K~18-19
- one can achieve 5km/s out to 100kpc within a few years

Precision Astrometry with MICADO

- MICADO is the adaptive optics imaging camera for the EELT
- > sensitivity is comparable to JWST and resolution is 6 times better
- > astrometric accuracy will be better than 50µas across the 1' field
- > numerous science cases can make use of this capability, including:
 - black hole masses & M_{BH}-σ_∗ relation
 - formation & evolution of the Galaxy
 - dark matter & structure formation