Tisková zpráva

Molekulární teploměr vzdáleného vesmíru

První přesné změření teploty reliktního záření raného vesmíru

13. května 2008

Astronomům se pomocí dalekohledu VLT poprvé v historii podařilo v ultrafialovém oboru identifikovat molekuly oxidu uhelnatého v galaxii vzdálené 11 miliard světelných let, o což se astronomie pokouší celých 25 let. Objev umožňuje velmi přesně změřit teplotu vesmíru v takto časově odlehlém období.

Po dobu plných 8 hodin tým astronomů [1] pozoroval pomocí spektrografu UVES, umístěného na VLT, jednu „dobře skrytou“ galaxii, jejíž světlo k nám cestovalo téměř 11 miliard let. To je doba, která odpovídá asi 80 % stáří vesmíru. Jedinou cestou, jak tuto konkrétní galaxii pozorovat, je studium spektra ještě vzdálenějšího kvasaru, ve kterém zůstane otisk mezihvězdného plynu galaxie [2]. „Kvasary slouží při tomto experimentu pouze jako majáky ve velmi vzdáleném vesmíru. Mezihvězdná oblaka plynu v galaxii, která se nachází mezi námi a kvasarem, pohlcují část jeho záření. Výsledné spektrum potom obsahuje tmavé pruhy, které odpovídají známým prvkům a pravděpodobně i molekulám,“ vysvětluje vedoucí týmu Raghunathan Srianand (Pune, Indie).

Díky schopnostem VLT a velmi pečlivé volbě cíle, který byl vybrán z přibližně deseti tisíc kandidátů, objevil tým v mezihvězdném plynu vzdálené galaxie stopy normálního i polotěžkého molekulárního vodíku (H2, HD) a molekul oxidu uhelnatého (CO). „Je to poprvé, co byly absorpční stopy těchto tří molekul nalezeny ve spektru kvasaru. Astronomové se o tento objev pokoušeli téměř čtvrt století,“ říká člen týmu Cédric Ledoux (ESO). Stejný tým astronomů pokořil v minulosti i jiný rekord, když nalezl nejvzdálenější molekulární vodík v galaxii, kterou dnes vidíme tak, jak vypadala v době, když byl vesmír starý pouhých 1,5 miliardy let (viz eso0616).

Mezihvězdný plyn je důležitou součástí galaxie, neboť z něj vznikají nové hvězdy. Navíc je stav plynu silně závislý na panujících fyzikálních podmínkách, jež určují, jaké molekuly se zde vytvářejí. Naproti tomu fyzikální podmínky úzce souvisejí s rychlostí tvorby hvězd. Přesné studium chemie mezihvězdného prostředí je proto důležitým krokem pro porozumění formování galaxií.

Na základě naměřených výsledků astronomové ukázali, že podmínky, jež panovaly uvnitř vzdálené galaxie, jsou podobné podmínkám v naší Galaxii. Důležitějším závěrem je však velmi přesné změření teploty reliktního záření vzdáleného vesmíru [3]. „Oproti jiným metodám je měření teploty reliktního záření pomocí molekul CO postaveno na méně předpokladech,“ prohlašuje spoluautor studie Pasquier Noterdaeme. Pokud vznikl vesmír Velkým třeskem, jak dnes soudí většina astrofyziků, musela být jeho teplota v minulosti vyšší. Právě takovýto výsledek poskytlo uvedené měření. „Na základě dnešní teploty reliktního záření, tj. 2,725 K, je předpokládaná teplota záření před 11 miliardami let kolem 9,3 K,“ říká spoluautor studie Patrick Petitjean a pokračuje: Ze série našich pozorování na VLT jsme odvodili teplotu 9,15 ± 0,7 K. To je vynikající shoda s teorií.“ „Věříme, že naše práce je průkopnickým počinem mezihvězdné chemie při kosmologickém rudém posuvu. Spolu s detekcí dalších molekul je rovněž ukázkou toho, jak účinně se může mezihvězdná chemie vypořádat s kosmologickými tématy,“ dodává Srianand.

Uveřejněné výsledky jsou prezentovány v Letter to the Editor v Astronomy and Astrophysics ("First detection of CO in a high-redshift damped Lyman-alpha system", by R. Srianand et al.).

Poznámky

[1]: The team is composed of Raghunathan Srianand (IUCAA, Pune, India), Pasquier Noterdaeme and Cédric Ledoux (ESO), and Patrick Petitjean (IAP, France). The same team already made the first measurement of the temperature of the cosmic microwave background radiation, at a time when the Universe was only about 2.5 billion years old, also using UVES on the VLT (see ESO 27/00). At that time, they could only measure a temperature in the range between 6 and 14 K.

[2]: Quasars are extraordinarily luminous objects in the distant Universe, thought to be powered by supermassive black holes at the heart of galaxies. A single quasar could be a thousand times brighter than an entire galaxy of a hundred billion stars, and yet this remarkable amount of energy originates from a volume smaller than our Solar System.

[3]: One of the fundamental predictions of the Hot Big Bang theory for the creation of the Universe is the existence of the Cosmic Microwave Background Radiation (CMBR). This relic radiation of the primeval fireball was discovered in 1964 by means of radio observations by American physicists Arno A. Penzias and Robert W. Wilson, who were rewarded with the Nobel Prize in 1978. Precision measurements by the COBE and WMAP satellites later showed that this ancient radiation fills the Universe, with a present-day temperature of slightly less than 3 degrees above absolute zero (2.725 Kelvin, or -270.4 degree Celsius). A particular prediction of the Big Bang theory is that the Universe cools when expanding, the temperature scaling with the dilution factor of the Universe (1 + redshift). At the redshift of the galaxy (2.41837), one would thus expect a temperature of 2.725 x (1 + 2.41837) = 9.315 K or -263.835 degree Celsius.

Kontakty

Tomáš Mohler
překlad
Hvězdárna Valašské Meziříčí, ČR
Email: eson-czech@eso.org

Cédric Ledoux
ESO
Chile
Tel.: +56 2 463 30 56
Email: cledoux@eso.org

Pasquier Noterdaeme
ESO
Chile
Tel.: +56 55 43 53 11
Email: pnoterda@eso.org

Patrick Petitjean
Institut d'Astrophysique de Paris, France
Paris, France
Tel.: +33 1 44 32 81 50
Email: petitjean@iap.fr

Raghunathan Srianand
Inter University Centre for Astronomy and Astrophysics
Pune, India
Tel.: +91 20 569 1414 (ext 320)
Email: anand@iucaa.ernet.in

Connect with ESO on social media

Toto je překlad tiskové zprávy ESO eso0813. ESON -- ESON (ESO Science Outreach Network) je skupina spolupracovníku z jednotlivých členských zemí ESO, jejichž úkolem je sloužit jako kontaktní osoby pro lokální média.

O zprávě

Tiskové zpráva č.:eso0813cs
Legacy ID:PR 13/08
Jméno:Spectrum
Typ:Unspecified : Nebula : Type : Interstellar Medium
Unspecified : Galaxy
Facility:Very Large Telescope
Instruments:UVES
Science data:2008A&A...482L..39S

Obrázky

Finding well-hidden galaxies
Finding well-hidden galaxies
pouze anglicky
Carbon monoxide in a remote galaxy
Carbon monoxide in a remote galaxy
pouze anglicky