Communiqué de presse

Une explosion d’étoile révèle la limite eau-neige

13 juillet 2016

Des observations effectuées au moyen du Vaste Réseau (Sub-)Millimétrique de l’Atacama (ALMA) ont pour la toute première fois permis de déterminer la limite eau-neige au sein d’un disque protoplanétaire. Cette limite correspond au seuil de température en-dessous duquel l’eau du disque entourant une jeune étoile se change en neige. Une hausse brutale de luminosité de la jeune étoile V883 Orionis a chauffé la partie interne du disque et repoussé la limite eau-neige bien au-delà de la distance classique pour une protoétoile, ce qui a permis de l’observer pour la première fois. Les résultats de cette étude paraissent au sein de l’édition du 14 juillet 2016 de la revue Nature.

Les jeunes étoiles sont souvent entourées de disques de gaz de de poussière, denses et en rotation, qualifiés de protoplanétaires parce qu’en leur sein se forment les planètes. Typiquement, la chaleur issue d’une jeune étoile semblable au Soleil est telle que l’eau du disque protoplanétaire se trouve à l’état de gaz à une distance inférieure à environ 3 ua de l’étoile  [1] – ce qui représente trois fois la distance Terre-Soleil, soit 450 millions de kilomètres environ [2]. A des distances supérieures, la très faible pression change les molécules d’eau gazeuse en une pellicule de glace à la surface des grains de poussière et d’autres particules. La limite eau-neige [3] correspond à cette région du disque protoplanétaire où se produit la transition de phase de l’eau, soit le passage de l’état gazeux à l’état solide.

Toutefois, l’étoile V883 Orionis est particulièrement spéciale. Une hausse brutale de sa luminosité a repoussé la limite eau-neige à une distance de quelque 40 ua – ce qui représente 6 milliards de kilomètres, soit approximativement le rayon de l’orbite de la planète naine Pluton dans notre Système Solaire. Cette forte augmentation, combinée à la résolution d’ALMA en mode longue base [4], a permis à une équipe dirigée par Lucas Cieza (Millennium ALMA Disk Nucleus et Université Diego Portales, Santiago, Chili), d’effectuer les toutes premières observations de la limite eau-neige au sein d’un disque protoplanétaire.

La hausse brutale de luminosité de V883 Orionis s’explique par la chute de grandes quantités de matière du disque protoplanétaire sur la surface de la jeune étoile. V883 Orionis est à peine 30% plus massive que le Soleil mais sa phase explosive actuelle lui confère une brillance 400 fois supérieure – et une température de surface bien plus élevée [5].

Lucas Cieza, auteur principal de cette étude, précise : “Les observations d’ALMA se sont révélées être une surprise. Nos observations visaient à acquérir l’image de la fragmentation du disque conduisant à la formation de planètes. Nous n’avons rien vu de tel ; en lieu et place, nous avons découvert ce qui ressemble à un anneau situé à 40 ua de l’étoile. Cet exemple illustre bien le pouvoir de transformation d’ALMA, qui est capable de délivrer des résultats intéressants, loin de ceux que nous cherchions.”

A première vue étranges, les mouvements de la neige dans l’espace revêtent un caractère essentiel dans le contexte de la formation planétaire. La présence de glace d’eau régule l’efficacité de la coagulation des grains de poussière – ce qui constitue le premier stade de la formation planétaire. En deçà de la limite eau-neige, là où l’eau est présente sous forme de vapeur, sont censées se former des planètes rocheuses de petite taille semblable à la nôtre. Au-delà de la limite eau-neige, la présence de glace d’eau permet la rapide formation de boules de neige cosmiques, qui éventuellement donneront lieu à la constitution de planètes massives et gazeuses telle Jupiter.

Le fait de découvrir que ces explosions sont susceptibles de repousser la limite eau-neige à une distance quelque dix fois supérieure à son éloignement classique est essentiel pour le développement de bons modèles de formation planétaire. La survenue de telles explosions semble constituer une phase évolutive de la plupart des systèmes planétaires. Il s’agirait donc de la toute première observation d’un phénomène courant. Cette observation d’ALMA pourrait ainsi contribuer, de manière significative, à une compréhension plus fine des processus de formation et d’évolution planétaires au sein de l’Univers.

Notes

[1] 1 ua, soit une unité astronomique, représente la distance moyenne de la Terre au Soleil, soit environ 149,6 millions de kilomètres. Cette unité est utilisée pour caractériser les distances à l’intérieur du Système Solaire et de systèmes planétaires en orbite autour d’autres étoiles.

[2] Au cours de la formation du Système Solaire, cette limite se situait entre les orbites de Mars et Jupiter. A l’intérieur de cette limite se sont donc formées les planètes rocheuses Mercure, Vénus, la Terre et Mars ; à l’extérieur, les planètes gazeuses Jupiter, Saturne, Uranus et Neptune.

[3] Les limites de neige d’autres molécules, tel le monoxyde de carbone et le méthane, ont fait l’objet d’observations antérieures au moyen d’ALMA, à des distances supérieures à 30 ua de la protoétoile au sein d’autres disques protoplanétaires. L’eau gèle à une température relativement élevée, et la limite eau-neige se situe donc généralement à trop grande proximité de la protoétoile pour pouvoir être observée directement.

[4] La résolution désigne la capacité à discerner deux objets proches. Pour l’œil humain, plusieurs torches lumineuses éloignées semblent se fondre en un seul point brillant ; chaque torche n’est discernable individuellement qu’à faible distance. Le même principe s’applique aux télescopes, et ces nouvelles observations ont exploité l’énorme potentiel d’ALMA, en termes de résolution, en mode longue base. La résolution d’ALMA à la distance de V883 Orionis est voisine de 12 ua – ce qui suffit pour détecter la limite eau-neige à la distance de 40 ua au sein de ce système explosif, mais se révèle insuffisant pour une jeune étoile typique.

[5] Les étoiles telle que V883 Orionis sont classées parmi les étoiles FU Orionis, en référence à l’étoile type présentant ce comportement. Les explosions devraient se poursuive pendant des centaines d’années.

Plus d'informations

Ce travail de recherche a fait l’objet d’un article intitulé “Imaging the water snow-line during a protostellar outburst”, par L. Cieza et al., à paraître au sein de l’édition du 14 juillet 2016 de la revue Nature.

L’équipe est composée de Lucas A. Cieza (Millennium ALMA Disk Nucleus; Université Diego Portales, Santiago, Chili), Simon Casassus (Université du Chili, Santiago, Chili), John Tobin (Observatoire Leiden, Université de Leiden, Pays-Bas), Steven Bos (Observatoire Leiden, Université de Leiden, Pays-Bas), Jonathan P. Williams (Université d’Hawaii à Manoa, Honolulu, Hawai, Etats-Unis), Sebastian Perez (Université du Chili, Santiago, Chili), Zhaohuan Zhu (Université de Princeton, Princeton, New Jersey, Etats-Unis), Claudio Cáceres (Université Valparaiso, Valparaiso, Chili), Hector Canovas (Université Valparaiso, Valparaiso, Chili), Michael M. Dunham (Centre d’Astrophysique d’Harvard-Smithson, Cambridge, Massachusetts, Etats-Unis), Antonio Hales (Observatoire Unifié ALMA, Santiago, Chili), Jose L. Prieto (Université Diego Portales, Santiago, Chili), David A. Principe (Université Diego Portales, Santiago, Chili), Matthias R. Schreiber (Université Valparaiso, Valparaiso, Chili), Dary Ruiz-Rodriguez (Université Nationale Australienne, Observatoire du Mont Stromlo, Canberra, Australie) et Alice Zurlo (Université Diego Portales & Université du Chile, Santiago, Chili).

Le Vaste Réseau (Sub-)Millimétrique de l'Atacama (ALMA), une installation astronomique internationale, est le fruit d'un partenariat entre l'ESO, la U.S. National Science Foundation (NSF) et le National Institutes of Natural Sciences (NINS) du Japon en coopération avec le Chili. ALMA est financé par l'Observatoire Européen Austral (ESO) pour le compte de ces Etats membres, la NSF en coopération avec le National Research Council du Canada (NRC), le National Science Council of Tawain (NSC) et le NINS en coopération avec l’Academia Sinica (AS) in Taiwan et le Korea Astronomy and Space Science Institute (KASI).

La construction et la gestion d'ALMA sont supervisées par l'ESO pour le compte de ses Etats membres, par le National Radio Astronomy Observatory (NRAO), dirigé par Associated Universities, Inc (AUI) en Amérique du Nord, et par le National Astronomical Observatory of Japan (NAOJ) pour l'Asie de l'Est. L’Observatoire commun ALMA (JAO pour Joint ALMA Observatory) apporte un leadership et un management unifiés pour la construction, la mise en service et l’exploitation d’ALMA.

L'ESO est la première organisation intergouvernementale pour l'astronomie en Europe et l'observatoire astronomique le plus productif au monde. L'ESO est soutenu par 15 pays : l'Allemagne, l'Autriche, la Belgique, le Brésil, le Danemark, l'Espagne, la Finlande, la France, l'Italie, les Pays-Bas, le Portugal, la République Tchèque, le Royaume-Uni, la Suède et la Suisse. L'ESO conduit d'ambitieux programmes pour la conception, la construction et la gestion de puissants équipements pour l'astronomie au sol qui permettent aux astronomes de faire d'importantes découvertes scientifiques. L'ESO joue également un rôle de leader dans la promotion et l'organisation de la coopération dans le domaine de la recherche en astronomie. L'ESO gère trois sites d'observation uniques, de classe internationale, au Chili : La Silla, Paranal et Chajnantor. À Paranal, l'ESO exploite le VLT « Very Large Telescope », l'observatoire astronomique observant dans le visible le plus avancé au monde et deux télescopes dédiés aux grands sondages. VISTA fonctionne dans l'infrarouge. C'est le plus grand télescope pour les grands sondages. Et, le VLT Survey Telescope (VST) est le plus grand télescope conçu exclusivement pour sonder le ciel dans la lumière visible. L'ESO est le partenaire européen d'ALMA, un télescope astronomique révolutionnaire. ALMA est le plus grand projet astronomique en cours de réalisation. L'ESO est actuellement en train de programmer la réalisation d'un télescope européen géant (E-ELT pour European Extremely Large Telescope) de la classe des 39 mètres qui observera dans le visible et le proche infrarouge. L'E-ELT sera « l'œil le plus grand au monde tourné vers le ciel.

Liens

Contacts

Lucas Cieza
Universidad Diego Portales
Santiago, Chile
Tél: +56 22 676 8154
Mobile: +56 95 000 6541
Courriel: lucas.cieza@mail.udp.cl

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tél: +49 89 3200 6655
Mobile: +49 151 1537 3591
Courriel: rhook@eso.org

Thierry Botti (contact presse pour la France)
Réseau de diffusion scientifique de l'ESO et Laboratoire d'Astrophysique de Marseille
Marseille, France
Tél: +33 4 95 04 41 06
Courriel: eson-france@eso.org

Connect with ESO on social media

Ce texte est une traduction du communiqué de presse de l'ESO eso1626.

A propos du communiqué de presse

Communiqué de presse N°:eso1626fr
Nom:V883 Orionis
Type:Milky Way : Star : Circumstellar Material : Disk : Protoplanetary
Facility:Atacama Large Millimeter/submillimeter Array
Science data:2016Natur.535..258C

Images

Vue d’artiste de la limite eau-neige autour de l’étoile V883 Orionis
Vue d’artiste de la limite eau-neige autour de l’étoile V883 Orionis
Zoom sur le disque protoplanétaire autour de V883 Orionis
Zoom sur le disque protoplanétaire autour de V883 Orionis
L’étoile V883 Orionis au sein de la constellation d’Orion
L’étoile V883 Orionis au sein de la constellation d’Orion
Déplacement de la limite eau-neige dans V883 Orionis
Déplacement de la limite eau-neige dans V883 Orionis
Image du disque protoplanétaire qui entoure V883 Orionis acquise par ALMA
Image du disque protoplanétaire qui entoure V883 Orionis acquise par ALMA

Vidéos

Image du disque protoplanétaire qui entoure V883 Orionis acquise par ALMA
Image du disque protoplanétaire qui entoure V883 Orionis acquise par ALMA
Zoom sur le disque protoplanétaire autour de V883 Orionis
Zoom sur le disque protoplanétaire autour de V883 Orionis
The protoplanetary disc around V883 Orionis (artist's impression)
The protoplanetary disc around V883 Orionis (artist's impression)
Seulement en anglais
New observations with ALMA reveal water snow line around young star
New observations with ALMA reveal water snow line around young star
Seulement en anglais

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.