Kids

Communiqué de presse

Premier spectre d'une exoplanète dans le domaine visible

Une nouvelle technique à l'avenir prometteur

22 avril 2015

Des astronomes utilisant le chasseur de planètes HARPS à l'Observatoire de La Silla de l'ESO au Chili ont effectué la toute première détection directe du spectre de lumière visible réfléchie par une exoplanète. Ces observations ont par ailleurs révélé les propriétés encore inconnues du célèbre objet – la première exoplanète découverte autour d'une étoile ordinaire, 51 Pegasi b. Les résultats obtenus au moyen de cette technique augurent des belles découvertes qu'effectueront la prochaine génération d'instruments tel ESPRESSO sur le VLT ainsi que les télescopes à venir tel l'E-ELT.

L'exoplanète 51 Pegasi b [1] se situe à quelque 50 années-lumière de la Terre dans la constellation de Pégase. Elle fut découverte en 1995 et demeurera à jamais la toute première exoplanète détectée à proximité d'une étoile normale semblable au Soleil [2]. Elle constitue également l'archétype des Jupiter chauds – un type de planètes relativement ordinaire, similaires à Jupiter en termes de taille et de masse, bien qu'orbitant à plus faible distance de leurs étoiles hôtes.

Depuis cette découverte historique, l'existence de plus de 1900 exoplanètes au sein de 1200 systèmes planétaires a été confirmée. Mais l'année du vingtième anniversaire de sa découverte, l'observation de 51 Pegasi b  permet une nouvelle avancée dans l'étude des exoplanètes.

L'équipe à l'origine de ces nouvelles observations était dirigée par Jorge Martins de l'Institut d'Astrophysique et des Sciences Spatiales (IA) de l'Université de Porto au Portugal, actuellement doctorant à l'ESO au Chili. Elle a utilisé l'instrument HARPS qui équipe le télescope de 3,60 mètres de l'ESO à l'Observatoire de La Silla au Chili.

La méthode la plus couramment utilisée de nos jours pour sonder l'atmosphère d'une exoplanète repose sur l'examen du spectre de l'étoile hôte qui traverse l'atmosphère de la planète au cours de son transit – cette technique se nomme spectroscopie de transmission. Une autre approche consiste à observer le système lorsque l'étoile passe devant la planète, et à en déduire la température de l'exoplanète.

Cette nouvelle technique ne dépend pas de la survenue d'un transit planétaire. Elle est donc susceptible d'être appliquée à l'étude d'un plus grand nombre d'exoplanètes. En outre, elle permet la détection directe du spectre planétaire dans le domaine visible, et donc la caractérisation de nouvelles propriétés planétaires impossibles à acquérir au moyen des autres méthodes.

Le spectre de l'étoile hôte est utilisé comme modèle pour orienter la recherche d'une semblable signature de la lumière censée être réfléchie par la planète lorsqu'elle décrit son orbite. La lueur des planètes étant extrêmement faible comparée à l'éclat de leurs étoiles hôtes, cette tâche s'avère particulièrement délicate.

Par ailleurs, le signal en provenance de la planète se trouve aisément masqué par d'autres effets mineurs et diverses sources de bruit [3]. La méthode appliquée aux données collectées par HARPS sur 51 Pegasi b a permis de surmonter l'ensemble de ces difficultés, ce qui constitue une formidable preuve de la validité du concept.

Jorge Martins résume ainsi la démarche adoptée : “Cette méthode de détection présente un grand intérêt scientifique parce qu'elle permet de mesurer la masse réelle de la planète ainsi que l'inclinaison de son orbite, deux paramètres essentiels à une meilleure compréhension du système. Elle conduit également à estimer l'albédo, ou indice de réflexion de la planète, dont nous pouvons déduire la composition de surface de la planète ainsi que celle de son atmosphère.”

Il est ainsi apparu que la masse de 51 Pegasi b avoisinait la moitié de celle de Jupiter, et que son orbite était inclinée de quelque 9 degrés en direction de la Terre [4]. En outre, son diamètre semble être supérieur à celui de Jupiter, et sa surface extrêmement réfléchissante. Ces quelques propriétés sont typiques de celles d'un Jupiter chaud situé à très grande proximité de son étoile hôte et donc exposé à un ensoleillement intense.

L'utilisation de HARPS s'est avérée cruciale pour cette étude. Et le fait que ce résultat ait été obtenu au moyen du télescope de 3,6 mètres de l'ESO, qui offre un domaine d'application restreint de cette technique, constitue une excellente nouvelle pour les astronomes. Ce type d'équipement sera bientôt supplanté en effet par de nouveaux instruments bien plus performants, destinés à équiper de plus grands télescopes tels le Très Grand Télescope de l'ESO et le Télescope Géant Européen [5].

“Nous attendons à présent avec impatience la première lumière du spectrographe ESPRESSO installé sur le VLT, afin d'effectuer une étude plus approfondie de ce système planétaire ainsi que d'autres”, conclut Nuno Santos de l'IA et de l'Université de Porto, également co-auteur de l'article.

Notes

[1] 51 Pegasi b et son étoile hôte 51 Pegasi figurent parmi les objets dont la dénomination publique sera connue à l'issue du concours NameExoWorlds lancé par l'IAU.

[2] Deux objets planétaires avaient été préalablement détectés en orbite autour d'un pulsar.

[3] Ce défi peut-être comparé au challenge que représente l'étude de la faible lueur réfléchie par un insecte de petite taille virevoltant autour d'une lumière intense et lointaine à la fois.

[4] Ce résultat implique que l'orbite de la planète pointe quasiment en direction de la Terre, mais pas suffisamment toutefois pour qu'un transit se produise.

[5] L'instrument ESPRESSO sur le VLT, et prochainement d'autres instruments encore plus puissants destinés à équiper de plus grands télescopes tel l'E-ELT, permettront de gagner notablement en précision et seront dotés d'un pouvoir collecteur nettement supérieur, donnant lieu à la détection d'exoplanètes plus petites et augmentant le niveau de détail des données d'observation de planètes semblables à 51 Pegasi b.

Plus d'informations

Ce travail de recherche a fait l'objet d'un article intitulé “Evidence for a spectroscopic direct detection of reflected light from 51 Peg b”, par J. Martins et al., à paraître au sein de l'édition du 22 avril 2015 de la revue Astronomy & Astrophysics.

L'équipe est composée de J. H. C. Martins (IA et Université de Porto, Porto, Portugal; ESO, Santiago, Chili), N. C. Santos (IA et Université de Porto), P. Figueira (IA et Université de Porto), J. P. Faria (IA et Université de Porto), M. Montalto (IA et Université de Porto), I. Boisse (Aix Marseille Université, Marseille, France), D. Ehrenreich (Observatoire de Genève, Genève, Suisse), C. Lovis (Observatoire de Genève), M. Mayor (Observatoire de Genève), C. Melo (ESO, Santiago, Chili), F. Pepe (Observatoire de Genève), S. G. Sousa (IA et Université de Porto), S. Udry (Observatoire de Genève) et D. Cunha (IA et Université de Porto).

L'ESO est la première organisation intergouvernementale pour l'astronomie en Europe et l'observatoire astronomique le plus productif au monde. L'ESO est soutenu par 15 pays : l'Allemagne, l'Autriche, la Belgique, le Brésil, le Danemark, l'Espagne, la Finlande, la France, l'Italie, les Pays-Bas, le Portugal, la République Tchèque, le Royaume-Uni, la Suède et la Suisse. L'ESO conduit d'ambitieux programmes pour la conception, la construction et la gestion de puissants équipements pour l'astronomie au sol qui permettent aux astronomes de faire d'importantes découvertes scientifiques. L'ESO joue également un rôle de leader dans la promotion et l'organisation de la coopération dans le domaine de la recherche en astronomie. L'ESO gère trois sites d'observation uniques, de classe internationale, au Chili : La Silla, Paranal et Chajnantor. À Paranal, l'ESO exploite le VLT « Very Large Telescope », l'observatoire astronomique observant dans le visible le plus avancé au monde et deux télescopes dédiés aux grands sondages. VISTA fonctionne dans l'infrarouge. C'est le plus grand télescope pour les grands sondages. Et, le VLT Survey Telescope (VST) est le plus grand télescope conçu exclusivement pour sonder le ciel dans la lumière visible. L'ESO est le partenaire européen d'ALMA, un télescope astronomique révolutionnaire. ALMA est le plus grand projet astronomique en cours de réalisation. L'ESO est actuellement en train de programmer la réalisation d'un télescope européen géant (E-ELT pour European Extremely Large Telescope) de la classe des 39 mètres qui observera dans le visible et le proche infrarouge. L'E-ELT sera « l'œil le plus grand au monde tourné vers le ciel ».

Liens

Contacts

Thierry Botti
Laboratoire d'Astrophysique de Marseille / Institut Pythéas
Marseille, France
Tel: +33 4 95 04 41 06
Email: thierry.botti@osupytheas.fr

Jorge Martins
Instituto de Astrofísica e Ciências do Espaço/Universidade do Porto
Porto, Portugal
Tel: +56 2 2463 3087
Email: Jorge.Martins@iastro.pt

Nuno Santos
Instituto de Astrofísica e Ciências do Espaço/Universidade do Porto
Porto, Portugal
Tel: +351 226 089 893
Email: Nuno.Santos@iastro.pt

Stéphane Udry
Observatoire de l’Université de Genève
Geneva, Switzerland
Tel: +41 22 379 24 67
Email: stephane.udry@unige.ch

Isabelle Boisse
Aix Marseille Université
Marseille, France
Email: Isabelle.Boisse@lam.fr

Richard Hook
ESO Public Information Officer
Garching, Germany
Tel: +49 89 3200 6655
Mobile: +49 151 1537 3591
Email: rhook@eso.org

Connect with ESO on social media

Ce texte est une traduction du communiqué de presse de l'ESO eso1517.

A propos du communiqué de presse

Communiqué de presse N°:eso1517fr
Nom:51 Pegasi b
Type:Milky Way : Star : Circumstellar Material : Planetary System
Facility:ESO 3.6-metre telescope
Instruments:HARPS
Science data:2015A&A...576A.134M

Images

Vue d'artiste de l'exoplanète 51 Pegasi B
Vue d'artiste de l'exoplanète 51 Pegasi B
L'étoile 51 Pegasi dans la constellation de Pégase
L'étoile 51 Pegasi dans la constellation de Pégase
Vue à grand champ autour de l'étoile 51 Pegasi
Vue à grand champ autour de l'étoile 51 Pegasi

Vidéos

Zoom sur 51 Pegasi
Zoom sur 51 Pegasi
Artist’s impression of the exoplanet 51 Pegasi b
Artist’s impression of the exoplanet 51 Pegasi b
Seulement en anglais