
A Tutorial on CORBA

Mark Plesko
J. Stefan Institute, Ljubljana, Slovenia

presented at the ESO
Garching, December 16-th, 1999

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

2

Summary
• Introduction

– Justification and History (=blah, blah)
– What is CORBA (Executive summary)
– How does CORBA work (Programmer summary)
– CORBA Features

• Concepts of CORBA
– What are Objects in CORBA
– Data Flow in CORBA
– Definitions

• CORBA details
– Request Invocation
– Object References
– The Portable Object Adapter (POA)

• More About CORBA

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

3

Justification and History (=blah, blah)
• Distributed Applications are heterogeneous

– layers, applications, libraries glued together
– can all components really work together?

• Two key rules
– build platform-independent models and abstraction
– hide as much low-level complexity without sacrificing too much

performance

• CORBA provides a well thought balanced set of abstractions and
concrete services
– Object Services
– Domain Interfaces
– Application Interfaces

• Object Management Group (OMG) since 1989 - now over 800
members

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

4

What is CORBA (Executive summary)
• ORB: Object Request Broker = manages remote access to objects
• CORBA: Common ORB Architecture = software bus for distributed

objects
• CORBA provides a framework for distributed OO programming

– remote objects are (nearly) transparently accessible from the local
program

– uses the client-server paradigm
– platform and language independent

• “an OO version of RPC”
– but a framework rather than a technology => lot of theory

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

5

How does CORBA work (Programmer summary)

Interface PS {
attribute double current;
readonly attribute Ulong status;
octet on(in octet value);
void test(out long result) ;

}

try {
 PS aPS = PSHelper.bind(ORB,“PS1”);
 if (! aPS.on(1)) return;
 aPS.set_current(3.1415);
 print (aPS.status());
} catch (CORBAexception) {…}

class PSimp extends PSImplBase{…};
…
PS thisPS = new PSimp(“PS1”) ;
BOA.obj_is_ready(thisPS);
BOA.impl_is_ready();

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

6

CORBA Features
• Don’t worry about unique terminology - these are just words!

– CORBA object
– request, target object, object reference
– client, server, servant

• Features
– Interface Definition Language (IDL)
– language mapping

• official: C, C++, Samlltalk, COBOL, Ada, Java
• also: Eiffel, Modula 3, Perl, Tcl, Objective-C, Python

– Operation invocation and dispatch facilities
• static (known at compile-time)
• dynamic (determined at run-time)

– Object adapters
• Design pattern: adapt CORBA object interface to servant

– Inter-ORB Protocol

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

7

What are Objects in CORBA
• Objects are abstract: not realized by any particular technology

– An object system is a collection of objects that isolates the requestor of
services (clients) from the providers of services by a well-defined
encapsulating interface

• Objects “talk” through requests: operation, target object, zero or
more parameters, optional request context

• Objects are described with interfaces
– operations (methods)
– attributes (properties)
– Standard data types are supported

• object references
• Any

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

8

Data Flow in CORBA

IIOP

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

9

Some Definitions
• ORB:

– find the object implementation for the request, prepare the object
implementation to receive the request and communicate the data
making up the request.

– ORB throws exceptions
– ORB implementation is not defined in CORBA

• Object Adapter (POA, BOA, …)
– provides ORB services to particular groups of object implementations
– generation and interpretation of object references, method invocation,

security of interactions, object and implementation activation and
deactivation, mapping object references to implementations, and
registration of implementations.

• IIOP: Internet Inter-ORB Protocol
– ORB’s of different vendors can talk
– TCP/IP implementation of GIOP

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

10

More Definitions
• IDL: Interface Definition Language

– IDL is the means by which a particular object implementation tells its
potential clients what operations are available and how they should be
invoked.

• Language mapping: recipe how to generate stubs&skeletons from
IDL
– Clients see objects and ORB interfaces through the perspective of a

language mapping, bringing the object right up to the programmer’s
level.

• Interface Repository: where all interfaces are stored network-wide
– provides information on interfaces at run-time

• DII: Dynamic Invocation Interface
– construct a remote method call at run-time without the use of stubs

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

11

Request Invocation
This is transparently handled by the ORB
• Locate target object
• activate server application if not yet running
• transmit any arguments
• activate a servant if necessary
• wait for request to complete
• return any out/inout parameters and return value
• return exception if call fails

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

12

Object References
• Several references to one object
• Can point to nowhere (death undetected)
• Are strongly typed (at compile&run time)
• Support late binding
• Implemented by proxies

• But how do you get a reference?
– Bootstrap

• via well known entry point (Naming service)
• via reference-to-string (known URL, filename)

– from a Object method call

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

13

The Portable Object Adapter (POA)
• Provides object creation, servant registration and mapping, request

dispatching
• Intended for scalable, high-performance applications

– different POAs for 1 object or millions of objects
• Is a locally-constrained object, multiple may exist

• Policies
– Object life span: persistent/transient
– Object Id: system_ID/user_ID
– Mapping objects to servants: unique_ID/multiple_ID
– Object activation: implicit/no_implicit
– Matching requests to servants: object_map/default_servant/manager
– Object to servant association: retain/non_retain
– allocation of threads: ORB_control/single_thread

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

14

CORBA Services
• Some 20+ defined services
• check vendor for implementation and limitations !
• Some interesting services

– Naming Service
• “directory-based”
• single or federated

– Event Service
• decouples suppliers from consumers
• push or pull models
• uses Any for event data
• Notification Service ?
• Messaging Service ?

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

15

More About CORBA
• Other features of CORBA

– vendor specific implementations - check performance you need !
– Gateways to DCOM and OLE automation exist
– CORBA Components (futureware)

• Some buzzwords to know (and use)
– thin client
– three tier architecture
– legacy systems

• Alternatives to CORBA:
– sockets low level, used by CORBA
– RPC not OO
– RMI language dependent
– DCOM maybe someday

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

16

Meta IDL - MIDL
#parameter P<type>|<type>{
 #accessors{#sync, #async, #history};
 #monitorable;
 #static{default_value, graph_min, graph_max, min_step,

resolution|pattern, description|string, format|string, units|string};
};
#parameter RW<type>|<type>: P<<type>>{
 #eventable{Alarm<<type>>};
 #mutators{#sync, #async, #nonblocking, #step};
 #static{min_value, max_value};
};

#device PowerSupply{
 #actions{on, off, reset, start_ramp(in CBRamp cb, in RampData data)};
 #methods{double sync_method_test(in double input, out double output);};

 #parameters{current|RW<double>, readback|RO<double>, status|ROpattern};
 #static{model|PowerSupplyModel};
};

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

17

Callbacks in BACI: device.property.get(CB)
• Asynchronous completion notification

interface CB<type> : CB {
oneway void execute(in <type> value, in Completion c, in CBDescOut desc);
oneway void cb_done(in <type> value, in Completion c, in CBDescOut desc);

};

• monitoring
• events

interface CB<event_set_name> : CB {
oneway void <event_1_name>(..., in CBDescOut desc);
oneway void <event_2_name>(..., in CBDescOut desc);
...

}
...
void subscribe_<event_set_name>(in CB<event_set_name> cb, in CBDescIn desc);
void unsubscribe_<event_set_name>(in CB<event_set_name> cb);

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

18

IDL2CPP

CW Gen

CLIENT STUB

CORBA WRAPPER

DB Gen

DB Pop

DB

ODBC LIB

DB ACCESS

IDL2CPP

CW Gen

CSIGen

CS LIB

COB SERVER SKELETONS

CORBA WRAPPER

SERVER IMPLEMENTATION

COSCO

ACTIVATOR

DEVICE DRIVERMIDL
(BACI)

D
A
G

CWM

CSM LIB

IDL2CPP

IDL
(MACI)

CoCoS Development

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

19

Servant B
Servant A

ADMIN.

DB
COB SERVER

CLIENT

D
B

 L
IN

K

DB LINK

D
B

 LIN
K

M LI
NK

M
 LI

NK

OBJE
CT

LIN
K

(O
D

B
C

, ...)

(C
ORBA

)

(C
ORB

A)

(C
ORB

A)

M LINK

(CORBA)
MANAGER

COB
COB

COB
type A

COB
COB

COB
COB

type B

CoCoS Runtime

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

20

CoCoS Startup and Management

ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

21

CoCoS on Pharlap/TNT Real-Time Operating System

