
A Tutorial on CORBA

Mark Plesko
J. Stefan Institute, Ljubljana, Slovenia

presented at the ESO
Garching, December 16-th, 1999



ESO, December, 16-th, 1999

M. Plesko, CORBA Tutorial

2

Summary
• Introduction

– Justification and History (=blah, blah)
– What is CORBA (Executive summary)
– How does CORBA work (Programmer summary)
– CORBA Features

• Concepts of CORBA
– What are Objects in CORBA
– Data Flow in CORBA
– Definitions

• CORBA details
– Request Invocation
– Object References
– The Portable Object Adapter (POA)

• More About CORBA
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Justification and History (=blah, blah)
• Distributed Applications are heterogeneous

– layers, applications, libraries glued together
– can all components really work together?

• Two key rules
– build platform-independent models and abstraction
– hide as much low-level complexity without sacrificing too much

performance

• CORBA provides a well thought  balanced set of abstractions and
concrete services
– Object Services
– Domain Interfaces
– Application Interfaces

• Object Management Group (OMG) since 1989 - now over 800
members
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What is CORBA (Executive summary)
• ORB: Object Request Broker = manages remote access to objects
• CORBA: Common ORB Architecture = software bus for distributed

objects
• CORBA provides a framework for distributed OO programming

– remote objects are (nearly) transparently accessible from the local
program

– uses the client-server paradigm
– platform and language independent

• “an OO version of RPC”
– but a framework rather than a technology => lot of theory
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How does CORBA work (Programmer summary)

Interface PS {
attribute double current;
readonly attribute Ulong status;
octet on(in octet value);
void test(out long result) ;

}

try {
    PS aPS = PSHelper.bind(ORB,“PS1”);
    if ( ! aPS.on(1) ) return;
    aPS.set_current(3.1415);
    print (aPS.status());
} catch (CORBAexception) {…}

class PSimp extends PSImplBase{…};
…
PS thisPS = new PSimp(“PS1”) ;
BOA.obj_is_ready(thisPS);
BOA.impl_is_ready();
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CORBA Features
• Don’t worry about unique terminology - these are just words!

– CORBA object
– request, target object, object reference
– client, server, servant

• Features
– Interface Definition Language (IDL)
– language mapping

• official: C, C++, Samlltalk, COBOL, Ada, Java
• also: Eiffel, Modula 3, Perl, Tcl, Objective-C, Python

– Operation invocation and dispatch facilities
• static (known at compile-time)
• dynamic (determined at run-time)

– Object adapters
• Design pattern: adapt CORBA  object interface to servant

– Inter-ORB Protocol
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What are Objects in CORBA
• Objects are abstract: not realized by any particular technology

– An object system is a collection of objects that isolates the requestor of
services (clients) from the providers of services by a well-defined
encapsulating interface

• Objects “talk” through requests: operation, target object, zero or
more parameters, optional request context

• Objects are described with interfaces
– operations (methods)
– attributes (properties)
– Standard data types are supported

• object references
• Any
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Data Flow in CORBA

IIOP
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Some Definitions
• ORB:

– find the object implementation for the request, prepare the object
implementation to receive the request and communicate the data
making up the request.

– ORB throws exceptions
– ORB implementation is not defined in CORBA

• Object Adapter (POA, BOA, …)
– provides ORB services to particular groups of object implementations
– generation and interpretation of object references, method invocation,

security of interactions, object and implementation activation and
deactivation, mapping object references to implementations, and
registration of implementations.

• IIOP: Internet Inter-ORB Protocol
– ORB’s of different vendors can talk
– TCP/IP implementation of GIOP
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More Definitions
• IDL: Interface Definition Language

– IDL is the means by which a particular object implementation tells its
potential clients what operations are available and how they should be
invoked.

• Language mapping: recipe how to generate stubs&skeletons from
IDL
– Clients see objects and ORB interfaces through the perspective of a

language mapping, bringing the object right up to the programmer’s
level.

• Interface Repository: where all interfaces are stored network-wide
– provides information on interfaces at run-time

• DII: Dynamic Invocation Interface
– construct a remote method call at run-time without the use of stubs
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Request Invocation
This is transparently handled by the ORB
• Locate target object
• activate server application if not yet running
• transmit any arguments
• activate a servant if necessary
• wait for request to complete
• return any out/inout parameters and return value
• return exception if call fails
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Object References
• Several references to one object
• Can point to nowhere (death undetected)
• Are strongly typed (at compile&run time)
• Support late binding
• Implemented by proxies

• But how do you get a reference?
– Bootstrap

• via well known entry point (Naming service)
• via reference-to-string (known URL, filename)

– from a Object method call
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The Portable Object Adapter (POA)
• Provides object creation, servant registration and mapping, request

dispatching
• Intended for scalable, high-performance applications

– different POAs for 1 object or millions of objects
• Is a locally-constrained object, multiple may exist

• Policies
– Object life span: persistent/transient
– Object Id: system_ID/user_ID
– Mapping objects to servants: unique_ID/multiple_ID
– Object activation: implicit/no_implicit
– Matching requests to servants: object_map/default_servant/manager
– Object to servant association: retain/non_retain
– allocation of threads: ORB_control/single_thread
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CORBA Services
• Some 20+ defined services
• check vendor for implementation and limitations !
• Some interesting services

– Naming Service
• “directory-based”
• single or federated

– Event Service
• decouples suppliers from consumers
• push or pull models
• uses Any for event data
• Notification Service ?
• Messaging Service ?
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More About CORBA
• Other features of CORBA

– vendor specific implementations - check performance you need !
– Gateways to DCOM and OLE automation exist
– CORBA Components (futureware)

• Some buzzwords to know (and use)
– thin client
– three tier architecture
– legacy systems

• Alternatives to CORBA:
– sockets low level, used by CORBA
– RPC not OO
– RMI language dependent
– DCOM maybe someday
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Meta IDL - MIDL
#parameter P<type>|<type>{
  #accessors{#sync, #async, #history};
  #monitorable;
  #static{default_value, graph_min, graph_max, min_step,

resolution|pattern, description|string, format|string, units|string};
};
#parameter RW<type>|<type>: P<<type>>{
  #eventable{Alarm<<type>>};
  #mutators{#sync, #async, #nonblocking, #step};
  #static{min_value, max_value};
};

#device PowerSupply{
  #actions{on, off, reset, start_ramp(in CBRamp cb, in RampData data)};
  #methods{double sync_method_test(in double input, out double output);};

  #parameters{current|RW<double>, readback|RO<double>, status|ROpattern};
  #static{model|PowerSupplyModel};
};
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Callbacks in BACI: device.property.get(CB)
• Asynchronous completion notification

interface CB<type> : CB {
oneway void execute(in <type> value, in Completion c, in CBDescOut desc);
oneway void cb_done(in <type> value, in Completion c, in CBDescOut desc);

};

• monitoring
• events

interface CB<event_set_name> : CB {
oneway void <event_1_name>(..., in CBDescOut desc);
oneway void <event_2_name>(..., in CBDescOut desc);
...

}
...
void subscribe_<event_set_name>(in CB<event_set_name> cb, in CBDescIn desc);
void unsubscribe_<event_set_name>(in CB<event_set_name> cb);
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CoCoS Startup and Management
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CoCoS on Pharlap/TNT Real-Time Operating System


