

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 2 of 44

CHANGE RECORD

ISSUE DATE

SECTIONS

AFFECTED

REASON/INITIATION

DOCUMENTS/REMARKS

0.1 16-05-2008 All First draft

1.0 30-06-2008 8 Added section for system test.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 3 of 44

Table of Contents
1. Introduction...6

1.1. Purpose ..6
1.2. Scope ..6
1.3. Applicable Documents..7

1.4. Reference Documents ...7
1.5. Abbreviations and Acronyms ...7
1.6. Glossary ...7

1.7. Stylistic Conventions ..7
1.8. Naming Conventions ..8
1.9. Problem Reporting/Change Request ..8

2. Overview ...9
2.1. System Architecture ..9
2.2. PMC Interface ...10

2.3. Specifications ..10
2.4. Hardware and Software Requirements ..11
2.5. NGC System Configuration ...11

2.6. Test Results ...12
3. Installation ..13
4. Device Driver ...14

4.1. Driver and Device Installation ...14
4.2. Device Access Functions ..15

4.2.1. open ..15

4.2.2. close ..15
4.2.3. ioctl ...15

4.3. General Tools ..16

5. Driver IOCTL Commands ...17
6. Data Capture ...20
7. Task Handling...21

7.1. Task Registration ..21
7.2. Run Control ...22
7.3. Parameter Access ..22

8. System Test ...24
8.1. After Power-Up ...24
8.2. Interactive Communication ..24

8.3. Visualization ..26
8.4. Verification ..26

9. Reference ..27

9.1. Error Definitions ...27
9.2. ngclcuDrv(3) ...29
9.3. ngclcuDevCreate(3) ..30

9.4. ngclcuIoctl(3) ..31

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 4 of 44

9.5. ngclcuInterrupt(3) ...34
9.6. ngclcuDevice(3) ..35
9.7. ngclcuTools(3) ..37

9.8. ngclcuCapture(3) ...39
9.9. ngclcuTask(3) ..41
9.10. ngclcuServer(1) ...44

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 5 of 44

List of Figures
Figure 1 System Architecture ..9

Figure 2 PMC Interface ..10

List of Tables
Table 1 Error Definitions ...28

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 6 of 44

1. Introduction
The software described in this manual is intended to be used in the ESO VLT project by

ESO and authorized external contractors only.

While every precaution has been taken in the development of the software and in the

preparation of this documentation, ESO assumes no responsibility for errors or omissions,

or for damage resulting from the use of the software or of the information contained

herein.

1.1. Purpose

This document is the user manual of the LCU interface software for the New General

detector Controller (NGC).

Its purpose is to provide people, who intend to process the NGC video-data on an ESO

standard LCU running the VxWorks operating system, with all the necessary information

to install the ngclcu software module and to build their own data-processing applications

on top of it. The ngclcu software module contains a device driver to access the NGC-

PMC interface device (see [RD1]) as well as some driver interface functions for data

capture and acquisition task handling.

Main applications for this NGC-LCU interface are the fast control loops with low latency

required by the VLTI instruments. It has to be distinguished clearly from the interface to

the SPARTA system for adaptive optics applications [RD11].

The manual assumes that the reader has some knowledge of the C/C++ programming

language, UNIX and VxWorks Operating Systems, and the VLT Software, in particular

CCS. It is not intended to be an introduction to LCU installation/configuration and

therefore it uses common terminology in this field without further explanation (e.g.

bootScript, userScript, CCS environment, etc.).

A conscious effort has been made to maintain a certain degree of backwards

compatibility of the ngclcu software module with the irvme software module [RD5],

which is the counterpart for the IRACE controller [RD4]. Nevertheless no responsibility

is assumed if this goal is missed in some areas. Where applicable a hint to the major

changes with respect to irvme can be found at the end of each section.

1.2. Scope

Scope of this document is the ngclcu software module. The interface hardware is

described in [RD1]. The software module is under CMM configuration control.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 7 of 44

1.3. Applicable Documents
The following documents, of the exact issue shown, form a part of this document to the extent
specified herein. In the event of conflict between the documents referenced herein and the
contents of this document, the contents of this document shall be considered as a superseding
requirement.

[AD1] VLT-SPE-ESO-13660-3207, 1.0 NGC Requirements Specification

[AD2] VLT-SPE-ESO-13660-3670, 1.0 NGC Software Requirements
[AD3] VLT-LIS-ESO-13660-3907, 1.0 NGC Project Glossary

[AD4] VLT-LIS-ESO-13660-3908, 1.0 NGC Project Acronyms

[AD5] VLT-PRO-ESO-10000-0228, 1.0 VLT Software Programming Standards

[AD6] VLT-MAN-ESO-17210-0667, 1.3 Guidelines for Development of VLT Application Software
[AD7] VLT-SPE-ESO-17212-0001, 5.0 VLT Instrumentation Software Specification

[AD8] VLT-SPE-ESO-17240-0385, 4.0 INS Common Software Specification

[AD9] GEN-SPE-ESO-19400-0794, 3.0 Data Interface Control Document

[AD10] VLT-MAN-ESO-17200-0642, 5.0 VLT Common Software – Installation Manual
[AD11] VLT-MAN-ESO-17240-2325, 5.0 INS Common Software – Configuration Tool – User Manual

[AD12] VLT-MAN_ESO-17210-0375, 2.2 VLT Software CCS-LCU Driver Development Guide and User Manual

1.4. Reference Documents
The following documents are referenced in this document.

[RD1] VLT-MAN-ESO-13660-4510 New General Detector Controller (NGC) - User Manual

[RD2] VLT-MAN-ESO-13660-4085 NGC Infrared DCS - User Manual
[RD3] VLT-MAN-ESO-13660-4086 NGC Optical DCS - User Manual

[RD4] VLT-MAN-ESO-14100-1878 VLT Software - IRACE-DCS - User Manual

[RD5] VLT-MAN-ESO-14100-2457 VLT Software - IRACE VME-BUS Interface Driver - User Manual

[RD6] VLT-MAN-ESO-17210-1358 VLT Software - CCS-LCU Configuration of VLT Standard VME Boards
[RD7] VLT-MAN-ESO-17210-0690 VLT Software - Graphical User Interface - User Manual

[RD8] VLT-MAN-ESO-17240-0866 Real Time Display - User Manual

[RD9] VLT-MAN-ESO-17200-0908 Tools for Automated Testing - User Manual
[RD10] GEN-SPE-ESO-00000-0949 VLT Time Reference System Time

[RD11] VLT-SPE-ESO-16100-3729 SPARTA - Adaptive Optics Real Time Computer Platform - Spec. for NGC

1.5. Abbreviations and Acronyms

Abbreviations and acronyms used in the NGC project are listed in [AD4].

1.6. Glossary

All the relevant concepts used within the NGC project are listed in [AD3].

1.7. Stylistic Conventions

The following styles are used:

bold in the text, for commands, file names, etc. as they must be typed.

italic in the text, for parts that have to be substituted with the real content before typing.

courier for examples.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 8 of 44

<name> in the examples, for parts that have to be substituted with the real content before

typing.

The bold and italic styles are also used to highlight words.

1.8. Naming Conventions

This implementation follows the naming conventions as outlined in [AD7].

1.9. Problem Reporting/Change Request

The form described in [AD10] shall be used.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 9 of 44

2. Overview

2.1. System Architecture

Figure 1 System Architecture

ngcb2Drv Acq.-Proc

P
C

I-
B

u
s

B
a

c
k

 -
E

n
d

 B
o
a
r
d

NGC-LLCU (Linux)

ngclcuServer Acq.-Proc

LCU (VxWorks)

IWS

Control

Server

RTD RTD

Database

Configuration

Files

FITS-Files

GUI

Commands

NGCDFE

P
M

C

In
te

r
fa

c
e
 B

o
a
r
d

Optional for

Test-Purposes

Data

Data
Cmd/Reply

Cmd/Reply

Data

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 10 of 44

2.2. PMC Interface

The PMC interface is a 64-bit DMA master interface to a PCI-bus in PMC format (see

Figure 2). Video data packets from the downstream link are recognized and written to the

video data FIFO. From there DMA transfers to the PMC PCI-bus can be executed.

Additionally the video data packets are forwarded to the upstream link. Packets

containing commands or replies are just routed through and are not seen from the PCI-

bus. A more detailed description of the hardware is given in [RD1].

Figure 2 PMC Interface

2.3. Specifications

PCI Interface: 64 Bit / 33 MHz

Minimum DMA Block-Size: 32 bytes (16 pixels)

Maximum DMA Block-Size: 512 bytes (256 pixels)

Maximum DMA-Size: Max. Phys.-Mem avail. / 2

FIFO

(Video-Data)

Link

Manager

UpStream
PCI-Bus

Interface

DownStream

Video-Data Commands

& Replies

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 11 of 44

2.4. Hardware and Software Requirements

To use the ngclcu software module the following hardware and software environment is

required (see also [RD6]):

 1 NGC Detector Front-End.

 1 NGC-LLCU (Linux PC) for NGC command and configuration control.

 1 VME-BUS chassis with P1/J1 and P2/J2 bus backplanes and power supplies.

 1 Motorola MVME6100 CPU board.

 1 NGC-PMC Interface Board (installed in PMC slot-1 of the MVME6100)

 VLTSW release VLT2008 or later.

 VxWorks version 5.5 operating system or higher.

 Software module lculog for internal logging, version 1.12 or higher.

 Software module lcudrv for common driver function, version 1.35 or higher.

 LCU software environment to boot from.

2.5. NGC System Configuration

The PMC interface always strips off one header from each link packet and therefore has

an influence on the routing tables (see [RD2]) of all NGC DFE modules (sequencer,

CLDC, ADC) connected behind. When the PMC interface is installed all routes have to

be prefixed with an additional link (5). E.g. the CLDC-module on the first basic board

would get:

DET.CLDC1.ROUTE "5,2"; # route to module (with PMC)

Instead of:

DET.CLDC1.ROUTE "2"; # route to module (without PMC)

The ADC-module on a second board would get:

DET.ADC2.ROUTE "5,5,2"; # route to module (with PMC)

Instead of:

DET.ADC2.ROUTE "5,2"; # route to module (without PMC)

For large systems such modifications are a bit inconvenient. Therefore the NGIRSW can

be instructed to add the prefix internally and hide these configuration issues from the

user. The keyword DET.DEVi.PMC “T|F” has to be used for that purpose. The system

will then automatically adjust the routing tables accordingly.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 12 of 44

2.6. Test Results

Measured latency with the MVME6100 CPU:

4µs + n ∙ (0.004 µs) (n < DMA BlockSize)

4µs + BlockSize ∙ (0.004 µs) (n ≥ DMA BlockSize)

where n is the number of bytes to be transferred. Using a 512 bytes DMA block-size a

maximum latency of 6 µs has been measured.

This latency adds to the read-out time. The latency of any VxWorks internal task

synchronization mechanism (e.g. semaphores) is not considered. So this is the minimum

latency where the applications code is executed at interrupt level (see section 5).

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 13 of 44

3. Installation
Use the following instructions to retrieve and install the ngclcu software module:

 cmmCopy ngclcu

 export CPU=PPC604

 cd ngclcu/src/

 make man all install

 cd ngclcu/test

 make man all install

To have the ngclcu module installed (see section 4.1) at LCU boot-time the following has

to be added to the userScript of the LCU environment:

lcubootAutoLoadNoAbort 1,"ngclcu",0

lcubootAutoCdBoot 1,"ngclcu.boot"

< ngclcu.boot

This installs the basic version without task-interface, data-server and test-facilities (i.e.

only the driver interface as described in sections 4, 5 and 6 can be used). In order to

install the full version at LCU boot-time the following has to be added to the userScript

of the LCU environment:

lcubootAutoLoadNoAbort 1,"ngclcu",0

lcubootAutoCdBoot 1,"ngclcu_all.boot"

< ngclcu_all.boot

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 14 of 44

4. Device Driver

4.1. Driver and Device Installation

The installation of the ngclcu driver is according to the VxWorks driver concept. Two

functions are provided:

ngclcuDrv installs the driver to the VxWorks I/O system. It takes the arguments:

a) The maximum number of supported devices.

b) The maximum number of channels that can be opened (should be at least 2).

c) The device access timeout in ticks (typically a value of 100 is used).

ngclcuDevCreate creates a device. It takes the arguments:

a) Device name (typically “/ngc0”).

b) The base address of the device on the PCI-Bus. The value 0x0 will use an

automatic configuration (recommended). The value 0xffffffff will create the device

in simulation mode. In simulation mode the devices registers are mapped in the

CPU RAM and data interrupts are generated via a timer. The simulation interrupt

interval can be set via the ngclcuCMD_SIMTIME ioctl-command. The timer

resolution is based on the VxWorks system clock (currently this is 10 ms with
VxWorks 5.5 and MVME6100).

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 15 of 44

4.2. Device Access Functions

The ngclcu driver supports the functions open, close and ioctl. The driver calls are

mutually exclusive. The device accessed by a task is protected from being accessed from

any other authorized task until the executing driver call has terminated. A task blocked

for access has a timeout. An error will be returned upon exceeding the timeout.

4.2.1. open

A channel to an ngclcu device can be opened with the open system call either in read-

only mode (lcudrvOPEN_READONLY) or shared mode (lcudrvOPEN_SHARED). The

device name is typically “/ngc0”:

channel = open(“/ngc0”, lcudrvOPEN_SHARED, (int)&status);

If the open call fails a negative value is returned. The status argument provides the

specific error reason. An appropriate error message is returned by the

ngclcuErrorGet(status) function. If the operation was successful the status is set to

lcudrvOK.

4.2.2. close

The close system call is used to close a channel to an ngclcu device:

status = close(channel);

The function returns lcudrvOK in case of successful operation. Otherwise an appropriate

error message is returned by the ngclcuErrorGet(status) function.

4.2.3. ioctl

The ioctl system call is used to send a command to an ngclcu device:

status = ioctl(channel, command, (int)&argument);

The function returns lcudrvOK in case of successful operation. Otherwise an appropriate

error message is returned by the ngclcuErrorGet(status) function. The command is a

number identifying the operation to be performed by the driver. Literals of all commands

are defined in ngclcuCommands.h. The valid ioctl commands are described in section 3.

The argument is the address of the command argument or NULL if no argument is used.

All argument data structures are defined in ngclcuCommands.h.

Changes with respect to irvme:

ngclcu implements the same device access functions as irvme.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 16 of 44

4.3. General Tools

The following tool functions are provided:

 ngclcuVersion() shows the version of the loaded driver module on the LCU-
console.

 ngclcuDevShow() prints a list of all installed NGC-PMC interface devices with

their respective installation parameters to the LCU console.

 ngclcuMalloc() allocates a cache-aligned buffer for DMA transfers. The syntax is

the same as for the standard malloc() system call.

 ngclcuFree() frees a buffer that has been allocated with the ngclcuMalloc()

function.

 ngclcuErrorGet() returns a pointer to a string matching the given status.

 ngclcuTransferStat2Str() returns a pointer to a string matching the given data

transfer status.

 ngclcuStatus() prints the current device status on stdout. The device is specified by
its instance number.

 ngclcuClr() resets the FIFOs on a device specified by its instance.

 ngclcuReadReg() reads a register value from a device specified by its instance.

 ngclcuWriteReg() writes a value to a register on a device specified by its instance.

 ngclcuIntOff() disables the interrupts from a device specified by its instance.

 ngclcuIntOn() enables the interrupts from a device specified by its instance.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 17 of 44

5. Driver IOCTL Commands
The following ioctl commands are supported by the ngclcu driver. The command literals

are defined in ngclcuCommands.h.

 ngclcuCMD_FREE_DEVICE frees a device;

The argument is ignored;

 ngclcuCMD_RESET_DEVICE resets a device (data-FIFO is cleared);

The argument is ignored;

 ngclcuCMD_READ_REG reads a device register;

The argument is a pointer to an ngclcuREG object:

UINT32 reg; - Register (offset)

UINT32 value; - Value

 ngclcuCMD_WRITE_REG writes to a device register;

The argument is a pointer to an ngclcuREG object.

UINT32 reg; - Register (offset)

UINT32 value; - Value

 ngclcuCMD_READ_PCI reads from a PCI configuration space register;

The argument is a pointer to an ngclcuREG object.

UINT32 reg; - Register (offset)

UINT32 value; - Value

 ngclcuCMD_WRITE_PCI writes to a PCI configuration space register;

The argument is a pointer to an ngclcuREG object.

UINT32 reg; - Register (offset)

UINT32 value; - Value

 ngclcuCMD_ACK_INT acknowledges that the device interrupt is handled;

The argument is ignored;

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 18 of 44

 ngclcuCMD_ATTACH_INT attaches to the device data interrupt;

The argument is a pointer to an ngclcuCFG_INT object:

SEM_ID semISR; - Interrupt service semaphore

ngclcuUSR_ISR *userISR; - User routine at interrupt level

void *userArg; - Pointer to user argument

BOOL trigger; - Trigger task on interrupt

If userISR is not a NULL pointer the given user routine is called at interrupt level.

The user routine is called with three arguments: a pointer to the received data

buffer, the size of the buffer and the given userArg. If trigger is set to TRUE the

returned semaphore semISR can be used to additionally trigger a routine at task

level. If userISR is a NULL pointer, semISR is always given in the interrupt

service routine regardless of the value of trigger. The user routine is defined in

ngclcuCommands.h as follows:

typedef void (ngclcuUSR_ISR)(void *buffer, int size, void *userArg);

 ngclcuCMD_DETACH_INT detaches from the device data interrupt;

The argument is ignored.

 ngclcuCMD_INT_ENABLE enables interrupt generation;

The argument is ignored.

 ngclcuCMD_INT_DISABLE disables interrupt generation;

The argument is ignored.

 ngclcuCMD_STATUS gets the i/o-status;

The argument returns a pointer to an ngclcuSTATUS object:

int pIdx; - Buffer index for process

int tstat; - Transfer status - this is one of:

ngclcuTSTAT_OK - Successful transfer

ngclcuTSTAT_OVERFLOW - FIFO overflow

ngclcuTSTAT_ERROR - Link i/o-error

BOOL overrun; - Buffer-overrun flag

BOOL attached; - Attached to interrupt

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 19 of 44

 ngclcuCMD_HWSTATUS gets the device hardware status;

The argument returns a pointer to an ngclcuHWSTATUS object:

UINT32 hwStatus; - Content of the device status register

D0-4: Reserved

D5: FIFO empty

D6: FIFO full

D7: Overflow flag (cleared with ngclcuCMD_RESET)

D8: Upstream link-channel up

D9-11: Upstream hard-/soft-/framing-error

D12: Downstream link-channel up

D13-15: Downstream hard-/soft-/framing-error

D16-31: Reserved

UINT32 revision; - Content of the device revision register

D0-3: Board type (9 = PMC interface)

D4-7: Sub-type (1)

D8-11: Hardware revision number

D12-15: Firmware revision number

D16-19: Firmware sub-revision number

D20-31: Reserved

int dmaSize; - DMA block-size

 ngclcuCMD_CONFIG configures the transfer;

The argument is a pointer to an ngclcuCONFIG object:

void *data[2]; - Pointers to user double buffer

int d_size; - Buffer size in bytes

int b_size; - DMA block-size in bytes (zero = default)

 ngclcuCMD_SIMTIME sets the simulation interval;

The argument is a pointer to an ngclcuSIMTIME object:

int simTime; - Simulation interval in microseconds

Changes with respect to irvme:

The ngclcuCMD_READ/WRITE_REG and ngclcuCMD_READ/WRITE_PCI commands

are new. The ngclcuCMD_HWSTATUS command has changed to reflect the new

hardware. The ngclcuCMD_CONFIG takes the DMA block-size as additional parameter.

This can be set to zero to let the system choose (as the irvme always does). The “error”

parameter in the ngclcuCMD_STATUS command has been removed as no error interrupt

is generated by the NGC PMC interface. The other commands and parameters are

backwards compatible with the irvme module.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 20 of 44

6. Data Capture
For easier data access several data capture control functions have been implemented on

top of the ioctl-calls. To use these function the ngclcuCapture.h header file has to be

included.

 ngclcuInit() returns a channel to a device specified by devName. If the channel

could not be opened (-1) is returned. The devName typically is “/ngc0”.

 ngclcuReset() resets the device. FIFO and FIFO-full-flag are cleared, but all other

configuration is kept.

 ngclcuConfig() configures a data capture via a device specified by a channel

returned by ngclcuInit(). The (double-)buffer passed to this function has to be

allocated by the calling routine. A NULL pointer indicates that the previous buffers

should be re-used. If no buffers have been configured with a prior call an error is

returned. The size of the buffer and the DMA block-size are given in bytes. A zero
block-size tells the system to use a default value.

 ngclcuStart() starts the data capture loop and returns a semaphore to be passed to

following ngclcuWait() calls. A user defined routine can be specified which is

called at interrupt level with three arguments: a pointer to the received data buffer,

the size of the buffer and the given user argument.

 ngclcuStop() aborts the data capture loop (asynchronous call).

 ngclcuWait() waits with timeout (in ticks) for the next data buffer and returns the

buffer index that has to be used for the processing. If WAIT_FOREVER is used as

timeout the routine waits until the transfer has completed or an error/abort has

occurred. The function returns a negative value (error code) if an error occurred. If

the transfer has been aborted ngclcuERROR_ABORTED is returned as error code,
which has to be caught by the calling application.

 ngclcuAck() has to be called when all processing is done with the current buffer.

 ngclcuRelease() should be called to release (and close) a channel to a device.

Changes with respect to irvme:

The data capture functions are backwards compatible with the irvme module except

ngclcuConfig() which has the DMA block-size as additional argument. Setting the block-

size to zero will provide the same behavior as the irvme module (i.e. let the system choose

an appropriate value).

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 21 of 44

7. Task Handling
The real-time applications can be controlled via the standard NGC-DCS in the same way

as a normal data acquisition process (see [RD2]). For that purpose the ngclcuServer task

has to be launched on the VxWorks platform, which runs the same TCP/IP socket

protocol as the standard NGC acquisition processes. The command port number is given

as parameter to the ngclcuServer task. The data port number defaults to command port

number plus one. It can also be given as second argument to ngclcuServer().

The server can execute any application specific data capture task that has previously been

registered. Run-control and parameter definitions are done in a similar way as with the

standard acquisition process. There also exists a NGC-DCS compatible data interface, but

here only one frame type (SAMPLE-Frame) is supported, as the ngclcu module has been

designed for real-time control loops rather than for imaging exposures. When specifying

a real-time task in the detector configuration, the task name (as given at registration) must

be prefixed by an “rt_<name>” token.

7.1. Task Registration

When installing an application module all exported tasks (i.e. tasks which should be

started and stopped by the ngclcuServer) must first be registered by calling the

ngclcuTaskRegister function:

int ngclcuTaskRegister(const char *name,

 FUNCPTR entryPt,

 int options,

 int stackSize,

 int numParam,

 ngclcuPARAM *param,

 int protectionTimeout,

 char *erms)

The synopsis is similar to the VxWorks taskSpawn function. Additionally an array of

parameter records has to be passed. These records define name and type and also a

default value for each parameter that should be set via the dynamic parameter facility of

the NGC-DCS:

char name[64]; - parameter name

int value; - parameter (default) value

int type; - parameter type

Supported parameter types are ngclcuPTYPE_INT (32 bit integer) and

ngclcuPTYPE_FLOAT (32 bit floating point). The protection timeout for the parameters

is specified in ticks. An internal task-id is returned which is also passed to the task as

(only) parameter. This id has to be used for all other calls to the ngclcu task interface

functions. The task is spawned, when the server receives a start command.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 22 of 44

7.2. Run Control

The task execution is synchronized to the start-/stop-command through calls to

ngclcuTaskStart(id)/ngclcuTaskCont(id, brk). If these functions return a FALSE value

the task should terminate. By setting the brk-flag to FALSE the task signals to the server,

that it will not exit at the stop-command, but will wait again for the next start-command.

If the brk-flag is set to TRUE, the task should terminate immediately.

Additionally two external flags are supported for run-control. The function

ngclcuTaskFlags(id, &resetFlag, &endFlag) returns the values of the two flags and

internally clears them after each call. If the resetFlag is set, the acquisition loop should

reset the current exposure and start from the beginning. If the endFlag is set, the

acquisition loop should end the exposure as soon as possible (for example by transferring

an intermediate result).

All fatal errors (i.e. errors which require that the task must be stopped and restarted, or

which force the task to terminate) should be reported through the

ngclcuErrStackAdd(msg) function.

7.3. Parameter Access

The parameters are accessed through the ngclcuTaskParam(id) function. This function

returns a pointer to a task specific parameter structure. The pointer should be casted to a

structure with integer/floating-point values in the same order as given in the param

argument to ngclcuTaskRegister(). The function can be called at any time and returns the

actual parameter setup values. When the task is selected via the NGC-DCS an argument

string is passed containing some configuration parameters, which are not subject to

changes during run-time. A pointer to a NULL terminated list of these arguments is

returned by the function ngclcuTaskArgGet(). Generally all tasks producing frames

which have to be transferred to the NGC-DCS should take the -nx, -ny arguments as

output format.

It is possible to access data-sets like flat-fields and bad-pixel-masks, which are

downloaded via the ngclcuServer. This is handled via the ngclcuTaskMem(memId, size,

&valid) function. The function returns a pointer to data-set memory identified by memId.

The memId has to be a single-bit value. The id-assignment is the responsibility of the

task application(s).

The first call to ngclcuTaskMem() to allocate a buffer for a new data-set should be done

during the registration phase (to let the ngclcuServer load the data-sets before the tasks

are started). If size is greater than zero, size bytes of memory are allocated. If size is equal

to ngclcuTASK_MEM_FREE, the data-set is removed. A NULL pointer is returned in

this case. If memId is equal to ngclcuTASK_MEM_ALL, all data-sets are removed (in

this case valid can be specified as a NULL pointer). If the function is called again with

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 23 of 44

the same memId but different size, then the memory of the data-set is reallocated and

marked as invalid. If the requested memory could not be allocated a NULL pointer is

returned. If size is equal to ngclcuTASK_MEM_NO_CHANGE only the buffer

belonging to the specified memId (or a NULL pointer if not yet initialized) is returned. If

the memory of the data-set has been validated by the server or by an explicit call to

ngclcuTaskMemValidate(memId) the valid flag is set to TRUE. A task application must

never use the memory of a data-set marked as invalid.

Changes with respect to irvme:

The task-handling is backwards compatible with the irvme module.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 24 of 44

8. System Test
Attention: This introduction is also available in ASCII format in the ngclcu SW-module

(ngclcu/doc/README).

8.1. After Power-Up

 Wait until the LCU responds to PING requests “ping <hostname>”.

 Then try “rlogin <hostname>” until the shell is successfully opened. You will

receive a message like “Sorry, the shell is locked.” until the LCU has executed all
instructions in the “bootScript”.

 Then either type “exit” to exit the shell or leave it opened to see the log-messages

issued by the ngclcu software.

8.2. Interactive Communication

A tool is available within the NGC Base-SW (module ngcpp, see [RD2]) which allows

the interactive communication with the ngclcu software:

ngcppShell -host <hostname> -port 9000

The following commands are supported:

connect

Reconnect the shell after LCU reboot. I.e. the ngcppShell can be left running and the

command stack is saved.

exit

Exit the ngcppShell.

iow config <address (HEX)> <value (HEX)>

Write a value to an address in the PCI-configuration space.

ior config <address (HEX)>

Read a value from an address in the PCI-configuration space.

iow local <address (HEX)> <value (HEX)>

Write a value to an address in the local address space.

ior local <address (HEX)>

Read a value from an address in the local address space.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 25 of 44

rmode rt_<taskName> <options>

Launch a new processing task with name <taskName> on the LCU. The <options> are

task specific. Typically the options -nx <pixels> and -ny <pixels> are supported to

communicate the image size.

Example:

rmode rt_taskAdc -nx 256 -ny 256

The following tasks are currently available:

 taskSimple [-nx <n>] [-ny <n>] [-dmasize <bytes>]

Default values (if not specified):

nx = 256

ny = 256

dmasize = 0 (let system choose)

 taskAdc [-nx <n>] [-ny <n>] [-nadc <n>] [-dmasize <bytes>]

Default values (if not specified):

nx = 256

ny = 256

nadc = 4

dmasize = 0 (let system choose)

Other tasks will be implemented upon request.

start

Start sustained DMA data acquisition.

stop

Stop sustained DMA data acquisition.

Remark: The other commands of the ngcppShell tool (see “help” command) are

supported as well, but do not have further meanings within the context of the procedure

described in this section.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 26 of 44

8.3. Visualization

The data can be visualized using the standard ngcrtd tool (see [RD2]):

ngcrtd -host <hostname> -dataport 9001 [-appname PMC -camera PMC]

The -appname and -camera options are only needed when another ngcrtd instance is

already running. Other names than “PMC” may be used (e.g. “NGC”, “MYRTD”, etc.).

Caution: The ngcrtd has to be re-launched after LCU-reboot!

8.4. Verification

The data can printed out in HEX-byte format and/or dumped to a file:

ngcppDart -host <hostname> -port 9001 [-v <2|3>] [-o <fileName>]

The -v options specifies a verbose level. In level 2 only the first bytes printed to the

screen. In level 3 all bytes are printed.

The -o option specifies a filename where the data values are dumped. If the file extension

is “.bin” the data is written in raw binary format. If the file extension is “.dat” the data is

written in ASCII format (20 bytes per row in HEX-byte format separated by white space).

If no extension is given “.bin” is assumed by default. The files will get a sequential

number for each received frame (i.e. “myFile_0001.bin”, “myFile_0002.bin”, etc.).

To verify data integrity one ngcppDart process for the LCU and one for the NGC-LLCU

(Linux-PC) has to be launched:

ngcppDart -host <Linux-PC> -o <file>_linux.bin (or .dat)

ngcppDart -host <LCU> -port 9001 -o <file>_lcu.bin (or .dat)

After starting the system the produced files can be compared:

diff <file>_linux_0001.bin <file>_lcu_0001.bin

or

diff <file>_linux_0001.dat <file>_lcu_0001.dat

The files must be identical.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 27 of 44

9. Reference

9.1. Error Definitions

In addition to the errors defined by the lcudrv module the following error-codes can be

returned by the installation functions (ngclcuDrv, ngclcuDevCreate) and the driver calls

(open, close, ioctl):

Error Code Description

ngclcuERROR_OPEN_CHANNELS -201
The operation could not be performed as still open

channels exist.

ngclcuERROR_INT_NOT_VALID -211 The content of the device interrupt register is invalid.

ngclcuERROR_INT_NO_HANDLER -212
The interrupt handler for the specified interrupt number

and level could not be built.

ngclcuERROR_SEMAPHORE_IVLD -213

It has been tried to access an invalid semaphore. The

semaphore was either not created successfully or has

already been deleted.

ngclcuERROR_ATTACHED -221
The operation could not be performed as the driver is

already attached to the device interrupts.

ngclcuERROR_DETACHED -222
The operation could not be performed as the driver is not

yet attached to the device interrupts.

ngclcuERROR_CFG_NO_CFG -231
The operation could not be performed as the data transfer

has not yet been configured.

ngclcuERROR_CFG_IVLD_DSIZE -232
An invalid size for the user data buffers has been

specified.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 28 of 44

Error Code Description

ngclcuERROR_CFG_IVLD_PTR -233
An invalid pointer to a user data buffer has been specified.

ngclcuERROR_DMA_INIT -241 The DMA initialization failed.

ngclcuERROR_ABORTED -251 The transfer has been aborted (via stop command).

ngclcuERROR_TRANSFER -252

An error occurred during data transfer. The transfer status

can be retrieved with the ngclcuCMD_STATUS ioctl-

command.

ngclcuERROR_PCI_NOT_FOUND -261 The device was not found on the PCI-Bus.

ngclcuERROR_PCI_MEM_MAP -262
The PCI-bus memory mapping for the device failed.

Table 1 Error Definitions

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 29 of 44

9.2. ngclcuDrv(3)

NAME

ngclcuDrv - Install the NGCLCU driver module

SYNOPSIS

#include "ngclcu.h"

int ngclcuDrv(int devices, int channels, int timeout);

int ngclcuDrvRemove(void);

DESCRIPTION

ngclcuDrv() is called only once at startup. It hooks up the various

I/O service calls to the diver's functions, assigns the driver number,

and adds the driver to the driver table.

 devices - number of supported devices

 channels - number of channels that can be simultaneously be opened

 timeout - access timeout value

ngclcuDrvRemove() removes an NGCLCU driver.

RETURN VALUES

lcudrvOK - driver successfully installed

lcudrvERROR_DRIVER_EXISTS - the driver is already installed

lcudrvERROR_NO_MEMORY - there is not enough memory for dynamic

 data structures

lcudrvERROR_INVALID_ARGUMENT - the value of one of the parameters is

 out of range

ngclcuERROR_OPEN_CHANNELS - open channels exist

SEE ALSO

ngclcuDevCreate(3), ngclcuInterrupt(3), ngclcuOpen(3), ngclcuClose(3),

ngclcuIoctl(3), ngclcuDevice(3), ngclcuTools(3), open(2), close(2),

ioctl(2)

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 30 of 44

9.3. ngclcuDevCreate(3)

NAME

ngclcuDevCreate - Add an I/O-device to the NGCLCU driver

SYNOPSIS

#include "ngclcu.h"

int ngclcuDevCreate(char *devName, void *baseAddr);

int ngclcuDevDelete(int unit);

DESCRIPTION

ngclcuDevCreate() is called at startup for each device to be installed.

It adds a device to the driver, making it available for subsequent open

operations.

 devName - device name (must be "/ngcX" X>=0, e.g. "/ngc0")

 baseAddr - PCI base address of the board in the PCI

 address space. The value 0x0 will use an auto-

 configuration (recommended). The value 0xffffffff

 will create the device in simulation mode.

ngclcuDevDelete() deletes a device specified by its unit.

RETURN VALUES

 lcudrvOK - successful completion

 lcudrvERROR - there is a general VxWorks I/O error

 lcudrvERROR_NO_DRIVER - driver not yet installed

 lcudrvERROR_INVALID_DEVICE - invalid device name

 lcudrvERROR_INVALID_ARGUMENT - invalid parameter

 lcudrvERROR_DEVICE_EXISTS - device already installed

 lcudrvERROR_NO_SEMAPHORE - creation of access protection semaphore

 failed

 ngclcuERROR_OPEN_CHANNELS - open channels exist

 ngclcuERROR_SEMAPHORE_IVLD - tried to access invalid semaphore

 ngclcuERROR_INT_NO_HANDLER - no interrupt handler

 ngclcuERROR_PCI_NOT_FOUND - device not found on PCI-Bus

 ngclcuERROR_PCI_MEM_MAP - PCI memory mapping failed

EXAMPLE

int status;

status = ngclcuDevCreate("/ngc0", 0x0);

if (status != lcudrvOK)

 {

 // error process

 }

SEE ALSO

ngclcuDrv(3), ngclcuInterrupt(3), ngclcuOpen(3), ngclcuClose(3),

ngclcuIoctl(3), ngclcuDevice(3), ngclcuTools(3), open(2), close(2),

ioctl(2)

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 31 of 44

9.4. ngclcuIoctl(3)

NAME

ngclcuIoctl - Send a control command to a NGCLCU I/O-device

SYNOPSIS

#include "ngclcu.h"

int ngclcuIoctl(int channel, int command, void *argument);

DESCRIPTION

This routine is called when a control command is send to an NGC

LCU I/O device via ioctl(). It validates the command request,

performs a semaphore protection if required and calls the command

procedure to be executed.

channel - channel opened to the NGCLCU I/O-device

command - number identifying the operation to be performed by the

 driver

argument - address of the command argument or NULL if no argument is

 used. For commands needing more multiple arguments it is the

 address of a data structure which contains those.

Valid commands:

ngclcuCMD_FREE_DEVICE - free a device;

The argument is ignored;

ngclcuCMD_RESET_DEVICE - reset a device;

The argument is ignored;

ngclcuCMD_READ_REG - read from register;

The argument is a pointer to an ngclcuREG object:

 UINT32 reg; - register (offset)

 UINT32 value; - value

ngclcuCMD_WRITE_REG - write to register;

The argument is a pointer to an ngclcuREG object:

 UINT32 reg; - register (offset)

 UINT32 value; - value

ngclcuCMD_READ_PCI - read from PCI configuration register;

The argument is a pointer to an ngclcuREG object:

 UINT32 reg; - register (offset)

 UINT32 value; - value

ngclcuCMD_WRITE_PCI - write to PCI configuration register;

The argument is a pointer to an ngclcuREG object:

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 32 of 44

 UINT32 reg; - register (offset)

 UINT32 value; - value

ngclcuCMD_ACK_INT - acknowledge that device interrupt is handled;

The argument is ignored;

ngclcuCMD_ATTACH_INT - attach to device data interrupt;

The argument is a pointer to an ngclcuCFG_INT object:

 SEM_ID semISR; - interrupt service semaphore

 ngclcuUSR_ISR *userISR; - user routine at interrupt level

 void *userArg; - pointer to user argument

 BOOL trigger; - trigger task on interrupt

If <userISR> is not a NULL pointer the user routine is called

at interrupt level. The user routine is called with three arguments:

a pointer to the received data buffer, the size of the buffer and

the given <userArg>:

 void userIsr(void *buffer, int dsize, void *userArg);

If <trigger> is set to TRUE the returned semaphore semISR can be used

to trigger a routine at task level. If <userISR> is a NULL pointer

semISR is always given in the interrupt service routine regardless

of the value of <trigger>.

ngclcuCMD_DETACH_INT - detach from device data interrupt;

The argument is ignored;

ngclcuCMD_INT_ENABLE - enable interrupt generation on NGCLCU-board;

The argument is ignored;

ngclcuCMD_INT_DISABLE - disable interrupt generation on NGCLCU-board;

The argument is ignored;

ngclcuCMD_STATUS - get transfer status;

The argument returns a pointer to an ngclcuSTATUS object:

 int pIdx; - buffer index for process

 int tstat; - transfer status - this is one of:

 ngclcuTSTAT_OK - successful completion

 ngclcuTSTAT_OVERFLOW - FIFO overflow

 ngclcuTSTAT_ERROR - link i/o-error

 BOOL overrun; - buffer overrun flag

 BOOL attached; - attached to interrupt

ngclcuCMD_HWSTATUS - get hardware status;

The argument returns a pointer to an ngclcuHWSTATUS object:

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 33 of 44

 UINT32 hwStatus; - hardware status

 UINT32 revision; - revision

 int dmaSize; - DMA size

ngclcuCMD_CONFIG - configure transfer;

The argument is a pointer to an ngclcuCONFIG object:

 void *data[2]; - pointers to user memory

 int d_size; - user buffer size in bytes

ngclcuCMD_SIMTIME - set simulation interval;

The argument is a pointer to an ngclcuSIMTIME object:

 int simTime; - simulation interval in microseconds

RETURN VALUES

lcudrvOK - successful completion

lcudrvERROR_INVALID_ARGUMENT - invalid channel number

lcudrvERROR_CHANNEL_NOT_OPEN - channel was not open

lcudrvERROR_INVALID_COMMAND - command code invalid

lcudrvERROR_ACCESS_CONFLICT - insufficient access rights

lcudrvERROR_TIMEOUT - access protection timed out

ngclcuERROR_SEMAPHORE_IVLD - semaphore not configured on device

ngclcuERROR_ATTACHED - device is already attached

ngclcuERROR_DETACHED - device is not yet attached

ngclcuERROR_NO_CFG - DMA not yet configured

ngclcuERROR_CFG_IVLD_DSIZE - invalid user buffer size

ngclcuERROR_CFG_IVLD_PTR - invalid user buffer pointer

SEE ALSO

ngclcuDrv(3), ngclcuDevCreate(3), ngclcuTools(3), ngclcuDevice(3),

lcudrvOpen(3), open(2), close(2), ioctl(2)

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 34 of 44

9.5. ngclcuInterrupt(3)

NAME

ngclcuInterrupt - Routines for the interrupt handling for the

 NGCLCU driver

SYNOPSIS

#include "ngclcu.h"

#include "ngclcuPrivate.h"

void ngclcuIsrData(int arg);

int ngclcuInitInterrupt(ngclcuDEVICE_DESCRIPTOR *devPtr);

DESCRIPTION

These functions perform the interrupt handling of the NGCLCU

driver.

ngclcuIsrData() is the interrupt service routine handling the

device data interrupt. The routine takes care of the double buffer

index and checks for overrun. Depending on the configuration the

routine either triggers a task via semaphore or calls a user-defined

interrupt service routine (or does both). The user-defined interrupt

service routine uses the syntax:

 void userIsr(void *buffer, int dsize, void *userArg);

If applicable the function is passed to the driver via the ioctl

system call.

ngclcuInitInterrupt() initializes the interrupt data structures

and connects the ngclcuIsrData() data interrupt service routine.

Afterwards the data interrupt is enabled.

RETURN VALUES

Unless specified otherwise:

 OK - successful completion

 ERROR - general error

 lcudrvERROR_NO_SEMAPHORE - semaphore creation failed

 ngclcuERROR_INT_NO_HANDLER - no interrupt handler

SEE ALSO

ngclcuOpen(3), ngclcuClose(3), ngclcuIoctl(3), ngclcuDevCreate(3),

ngclcuDrv(3)

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 35 of 44

9.6. ngclcuDevice(3)

NAME

ngclcuDevice - Device layer routines for the NGCLCU driver

SYNOPSIS

#include "ngclcu.h"

#include "ngclcuPrivate.h"

UINT32 ngclcu2Dev(UINT32 x);

UINT32 ngclcuPciAddr(void *buffer);

int ngclcuPciInit(ngclcuDEVICE_DESCRIPTOR *devPtr, void *baseAddress);

int ngclcuDmaReset(ngclcuDEVICE_DESCRIPTOR *devPtr);

void ngclcuDescrSetup(ngclcu_desc_t *desc, void *dmaAddr, int dmaSize,

 ngclcu_desc_t *next, int intr);

int ngclcuDmaNumDescr(int size, blockSize);

int ngclcuDmaCfg(ngclcuDEVICE_DESCRIPTOR *devPtr);

int ngclcuDmaStart(ngclcuDEVICE_DESCRIPTOR *devPtr);

int ngclcuDmaAbort(ngclcuDEVICE_DESCRIPTOR *devPtr);

int ngclcuDmaEnableInterrupt(ngclcuDEVICE_DESCRIPTOR *devPtr);

int ngclcuDmaDisableInterrupt(ngclcuDEVICE_DESCRIPTOR *devPtr);

DESCRIPTION

ngclcu2Dev() is an inline function to convert a 32-bit CPU word

into a register value (and vice versa).

ngclcuPciAddr() returns the PCI-bus address for <buffer>.

ngclcuPciInit() initializes the PCI-bus device.

ngclcuDmaReset() clears all DMA fifos.

ngclcuDmaDescrSetup() sets up a complete DMA-descriptor block. The

parameter <next> contains the address of the next descriptor block.

If <intr> is not zero then an interrupt is generated after the DMA

associated to this descriptor has completed.

ngclcuDmaNumDescr() returns the number of DMA descriptor blocks needed

for a DMA of the given <size>. The <blockSize> defines the maximum

size of one DMA scatter-gather buffer.

ngclcuDmaCfg() configures the DMA descrioptors for the sustained

scatter/gather DMA.

ngclcuDmaStart() starts the sustained DMA.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 36 of 44

ngclcuDmaAbort() aborts the sustained DMA.

ngclcuDmaEnableInterrupt() enables the interrupts from the devices.

ngclcuDmaDisableInterrupt() disables the interrupts from the devices.

RETURN VALUES

Unless specified otherwise:

 OK - successful completion

 ERROR - general error

 lcudrvERROR_TIMEOUT - access protection timed out

 lcudrvERROR_NO_MEMORY - memory allocation failed

 ngclcuERROR_CFG_IVLD_DSIZE - invalid buffer size

 ngclcuERROR_PCI_NOT_FOUND - device not found on PCI-Bus

 ngclcuERROR_PCI_MEM_MAP - PCI memory mapping failed

SEE ALSO

ngclcuOpen(3), ngclcuClose(3), ngclcuIoctl(3), ngclcuDrv(3),

ngclcuDevCreate(3), ngclcuTools(3), open(2), close(2), ioctl(2)

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 37 of 44

9.7. ngclcuTools(3)

NAME

ngclcuTools - Tools for the NGCLCU driver

SYNOPSIS

#include "ngclcu.h"

const char *ngclcuTransferStat2Str(u_long transferStatus);

const char *ngclcuErrorGet(int status);

void *ngclcuMalloc(unsigned int size);

void ngclcuFree(void *buffer);

void ngclcuSwap2(void *buffer, int length);

void ngclcuSwap4(void *buffer, int length);

void ngclcuVersion(void);

void ngclcuDevShow(void);

STATUS ngclcuStatus(int instance);

STATUS ngclcuClr(int instance);

STATUS ngclcuReadReg(UINT32 reg, int instance);

STATUS ngclcuWriteReg(UINT32 reg, UINT32 value, int instance);

STATUS ngclcuIntOff(int instance);

STATUS ngclcuIntOn(int instance);

DESCRIPTION

ngclcuTransferStat2Str() returns a pointer to a string translating

the transfer status passed by <tstat>.

ngclcuErrorGet() returns a pointer to a string translating the

<status> (result code of NGCLCU I/O function calls).

ngclcuMalloc() allocates <size> bytes of properly aligned memory and

returns a pointer to it.

ngclcuFree() frees a buffer that has previously been allocated

with the ngclcuMalloc() function.

ngclcuSwap2() changes the byte order of the 16-bit numbers in <buffer>

from 1,2 to 2,1 (Big endian to little endian). <length> is the number

of 16-bit items of <buffer>.

ngclcuSwap4() changes the byte order of the 32-bit numbers in <buffer>

from 1,2,3,4 to 4,3,2,1 (Big endian to little endian). <length> is

the number of 32-bit items (integer, single prec. float) of <buffer>.

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 38 of 44

ngclcuVersion() prints the driver version.

ngclcuDevShow() prints a list of NGCLCU I/O-devices controlled by the

driver.

ngclcuStatus() prints the current device status on stdout. The device

is specified by its instance number.

ngclcuClr() resets the FIFOs on a device specified by its instance.

ngclcuReadReg() reads a register value from a device specified

by its instance.

ngclcuWriteReg() writes a value to a register on a device specified

by its instance.

ngclcuIntOff() disables the interrupts from a device specified by its

instance.

ngclcuIntOn() enables the interrupts from a device specified by its

instance.

RETURN VALUES

Unless specified otherwise:

 OK - successful completion

 ERROR - general error

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 39 of 44

9.8. ngclcuCapture(3)

NAME

ngclcuCapture - Data capture functions for the NGCLCU driver

SYNOPSIS

#include "ngclcuCapture.h"

int ngclcuInit(const char *devName, char *erms);

int ngclcuReset(int channel, char *erms);

int ngclcuConfig(int channel, void **buffer, int size, int blockSize,

 char *erms);

SEM_ID ngclcuStart(int channel, ngclcuUSR_ISR *userISR,

 void *userArg, char *erms);

int ngclcuStop(int channel, char *erms);

int ngclcuWait(int channel, SEM_ID semISR, int timeout, char *erms);

int ngclcuAck(int channel, char *erms);

int ngclcuRelease(int channel, char *erms);

DESCRIPTION

ngclcuInit() returns a channel to an NGCLCU device specified by

<devName>. If the channel could not be opened (-1) is returned.

ngclcuReset() resets the state-machine of the NGCLCU device.

FIFO and FIFO-status are cleared, but all control configuration

is kept.

ngclcuConfig() configures a data capture via an NGCLCU device specified

by a channel returned by ngclcuInit(). The (double-)buffer has to be

allocated by the calling routine. If a NULL pointer is passed as

buffer, the previous buffers are used. If no buffers have been

configured with a prior call an error is returned. The <size>

of the buffer is given in bytes. The <blockSize> defines the maximum

size of one DMA scatter-gather buffer. When set to zero, a default

DMA block-size is used.

ngclcuStart() starts the data capture loop and returns a semaphore

to be passed to following ngclcuWait() calls. If <userISR> is not NULL

the user defined routine is called at interrupt level with three

arguments: a pointer to the received data buffer, the size of the

buffer and the given <userArg>:

 void userIsr(void *buffer, int dsize, void *userArg);

ngclcuStop() aborts the data capture loop (asynchronous call).

ngclcuWait() waits with timeout (in ticks) for the next data buffer

and returns the buffer index that has to be used for the processing.

If <timeout> is WAIT_FOREVER the routine waits until the transfer

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 40 of 44

has completed or an error/abort occurred. The function returns a

negative value (error code) if an error occurred. If the transfer has

been aborted ngclcuERROR_ABORTED is returned as error code (this

should be caught by the calling application).

ngclcuAck() has to be called when all processing is done with the

current buffer.

ngclcuRelease() should be called to release (and close) a channel

to an NGCLCU device.

RETURN VALUES

Unless specified otherwise:

 OK - successful completion

 ERROR - general error

SEE ALSO

ngclcuIoctl(3), ngclcuDrv(3), ngclcuDevCreate(3),

open(2), close(2), ioctl(2)

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 41 of 44

9.9. ngclcuTask(3)

NAME

ngclcuTask - Task control for the NGCLCU driver

SYNOPSIS

#include "ngclcuTask.h"

int ngclcuTaskInit(void);

int ngclcuTaskRegister(const char *name,

 FUNCPTR entryPt,

 int options,

 int stackSize,

 int numParam,

 ngclcuPARAM *param,

 int protectionTimeout,

 char *erms);

void ngclcuTaskFree(int id);

void ngclcuTaskFreeAll(void);

int ngclcuSp(FUNCPTR entryPt);

int ngclcuTaskId(const char *name);

BOOL ngclcuTaskStart(int id, int channel);

BOOL ngclcuTaskCont(int id, BOOL brk);

void *ngclcuTaskParam(int id);

void ngclcuTaskError(int id, const char *erms);

void ngclcuTaskReqOut(ngclcuFRAME frame, int id);

int ngclcuTaskArgSet(const char *arg);

char **ngclcuTaskArgGet(void);

void ngclcuTaskFlags(int id, BOOL *resetFlag, BOOL *endFlag);

void *ngclcuTaskMem(int memId, int size, BOOL *valid);

int ngclcuTaskMemValidate(int memId, BOOL valid);

int ngclcuTaskMemSize(int memId);

DESCRIPTION

ngclcuTaskInit() initializes the task handling and should be called

once when installing the module. Multiple calls to ngclcuTaskInit

without deleting the task-handling with ngclcuTaskFreeAll() have

no effect.

ngclcuTaskRegister() registers a task for exectution via the

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 42 of 44

ngclcuServer. Parameters are the same as for taskSpawn. The

priority is set by the server. Additionally a parameter array

containing <numParam> parameter structures has to be passed:

 char name[64]; - parameter name

 int value; - parameter (default) value

 int type; - parameter type

Supported parameter types are ngclcuPTYPE_INT (32 bit integer) and

ngclcuPTYPE_FLOAT (32 bit floating point). The protection timeout

for the parameters is specified in ticks. An internal task-id

is returned which is also passed to the task as (only) parameter.

This id has to be used for all other calls to the ngclcu task

interface functions. The task is spawned, when the server receives

a start command.

ngclcuTaskFree() removes a task from the registry.

ngclcuTaskFreeAll() removes all tasks from the registry and deletes

the task-handling.

ngclcuSp() spawns the specified NGCLCU-application task with default

parameters.

ngclcuTaskId() returns the internal id of the task registered with <name>.

ngclcuTaskStart() synchronizes to the start command. If the function

returns FALSE, then the task should terminate.

ngclcuTaskCont() synchronizes to the stop command. By setting <brk> to

FALSE the task signals to the server, that it will not exit but

wait again for the next start command. If <brk> is TRUE the task

should terminate immediately. If the function returns FALSE, the

the task should also terminate.

ngclcuTaskParam() returns a pointer to a task specific parameter

structure. The pointer should be casted to a structure with

integer/floating-point values in the same order as given in

the <param> argument to ngclcuTaskRegister(). This function can be

called at any time and returns the actual parameter setup values.

ngclcuTaskError() puts an error message to the error-stack. This should

be done only for fatal-errors, which require that the task has

to be stopped/restarted.

ngclcuReqOut() passes a data frame to the data transfer task(s). The

function returns immediately. The transfer of <frame> is done

asynchronously if the function returns TRUE. If FALSE is returned

then no action has been taken.

The frame structure (ngclcuFRAME) is defined as follows:

 ngclcuFRAME_H h; - header structure

 char *fbuf; - frame buffer

The frame header structure (ngclcuFRAME_H) is defined as follows:

 int dtype; - data type

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 43 of 44

 int ftype; - frame type

 int start_x; - window start-x

 int start_y; - window start-y

 int nx; - window nx

 int ny; - window ny

 int scal; - scale factor

 int cnt; - frame counter

 int setupId; - setup-id

 int err; - error-id

 int overrun; - overrun flag

 int frames; - available frame types

 int tx; - track point x

 int ty; - track point y

ngclcuTaskArgSet() sets a global argument string. The arguments are

separated by white spaces. The current task can retrieve a pointer

to the argument list by calling ngclcuTaskArgGet().

ngclcuTaskArgGet() returns the NULL terminated argument list.

ngclcuTaskFlags() returns the run-control flags of the task specified

by <id>. The flags are set to FALSE after each call.

ngclcuTaskMem() returns a pointer to data-set memory identified by

<memId>. The <memId> has to be a single-bit value. The id-assignment

is the responsibility of the task application(s). If <size> is greater

than zero, <size> bytes of memory are allocated. If <size> is equal to

ngclcuTASK_MEM_FREE, the data-set is removed. In this case a NULL pointer

is returned. If <memId> is equal to ngclcuTASK_MEM_ALL, all data-sets

are removed (in this case <valid> can be specified as NULL pointer).

If the function is called again with the same <memId> but different

size, then the memory of the data-set is reallocated and marked as

invalid. If the memory could not be allocated a NULL pointer is

returned. If <size> is equal to ngclcuTASK_MEM_NO_CHANGE only the

buffer belonging to the specified <memId> (or a NULL pointer if not

yet initialized) is returned. If the memory of the data-set has been

validated once by an explicit call to ngclcuTaskMemValidate() the

<valid> flag is set to TRUE. A task application must never use the

memory of a data-set marked as invalid.

ngclcuTaskMemValidate() validates/invalidates the memory of all data-sets

given in <memIdMask> depending on the value of <valid>. <memIdMask>

is a mask with all single-bit memory id's set, for which the operation

has to be performed.

ngclcuTaskMemSize() returns the size (in bytes) of the memory

allocated for a specific data-set or -1 if the data-set has not yet

been configured.

RETURN VALUES

Unless specified otherwise:

 OK - successful completion

 ERROR - general error

SEE ALSO

ngclcuCapture(3), ngclcuServer(1), taskSpawn(2), sp(2)

New General detector Controller

NGC-LCU Interface – User Manual

VLT-MAN-ESO-13660-4560

Issue 1.0

Page 44 of 44

9.10. ngclcuServer(1)

NAME

ngclcuServer - Data capture control server for the NGCLCU interface

SYNOPSIS

#include "ngclcuTask.h"

STATUS ngclcuServer(int cmdPort, int dataPort);

int ngclcuSrvCmdPort(void);

int ngclcuSrvDataPort(void);

int ngclcuSrvErrorPort(void);

void ngclcuSrvAbort(void);

DESCRIPTION

ngclcuServer() is the data capture control server for the NGCLCU

interface. If <cmdPort> is zero a free port number is chosen

by the operating system, which can be retrieved with the

ngclcuSrvCmdPort() function. If <dataPort> is zero and cmdPort

is not zero, then the data port number is computed as command

port number plus one. If both port numbers are zero, a free

port number is chosen also for the data port, which can be

retrieved with the ngclcuSrvDataPort() function.

ngclcuSrvCmdPort() returns the actual command server port number.

ngclcuSrvDataPort() returns the actual data server port number.

ngclcuSrvErrPort() returns the actual error stack server port number.

ngclcuSrvAbort() aborts the data capture control server.

RETURN VALUES

Unless specified otherwise:

 OK - successful completion

 ERROR - general error

SEE ALSO

ngclcuDrv(3), ngclcuDevCreate(3), ngclcuCapture(3), ngclcuTask(3),

ngclcuSock(3)

	Front Page

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Purpose
	Scope
	Applicable Documents
	Reference Documents
	Abbreviations and Acronyms
	Glossary
	Stylistic Conventions
	Naming Conventions
	Problem Reporting/Change Request

	Overview
	System Architecture
	PMC Interface
	Specifications
	Hardware and Software Requirements
	NGC System Configuration
	Test Results

	Installation
	Device Driver
	Driver and Device Installation
	Device Access Functions
	open
	close
	ioctl

	General Tools

	Driver IOCTL Commands
	Data Capture
	Task Handling
	Task Registration
	Run Control
	Parameter Access

	System Test
	After Power-Up
	Interactive Communication
	Visualization
	Verification

	Reference
	Error Definitions
	ngclcuDrv(3)
	ngclcuDevCreate(3)
	ngclcuIoctl(3)
	ngclcuInterrupt(3)
	ngclcuDevice(3)
	ngclcuTools(3)
	ngclcuCapture(3)
	ngclcuTask(3)
	ngclcuServer(1)

		Véronique
	2008-07-11T12:20:38+0200
	13.07.2008
	ESO Technical Archive

