
E U R O P E A N S O U T H E R N O B S E R V A T O R Y
Organisation Européenne pour des Recherches Astronomiques dans l’Hémisphère Austral

Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

VERY LARGE TELESCOPE

Prepared...
Name Date Signature

Approved...
Name Date Signature

Released ...
Name Date Signature

Doc.No. VLT-SPE-ESO-13660-3837

Issue 2.5

Date 25/05/07

VLT PROGRAMME * TELEPHONE: +49 89 32006-0 * FAX: +49 89 320 2362

ESO New General Detector Controller

Infrared Detector Control Software

Design Description

A.Moorwood

J.Stegmeier 25/05/07

G.Finger

2 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 3
Change Record

Issue/Rev. Date Section/Page affected Reason/Initiation/Document/Remarks

0.1 30/11/05 All First preparation.

1.0 27/03/06 2

3

4.6

4.8

4.9

3.1 to 3.4

3.4

3.7

3.9

6

7

Restructured. Added section for test software.

Added sections for logging and error handling.

The users access rights for the data-path are
checked before the exposure is started.

Added post-processing control loops.

Added acquisition process continuous mode.

Order has been changed. Voltage telemetry
check added.

Sytsem can be configured for pure hardware
control as well as for pure data acquisition.

Added directory tree.

Configuration modules.

Added traceability matrix.

Updated.

2.0 10/08/06 All Revised version.

2.1 30/08/06 3.1
7

New database architecture.
Updated man-pages.

2.2 03/01/07 All
7

Aligned with ne naming conventins.
Updated man-pages and CDT.

2.3 19/02/07 5
7

Updated panel screenshots.
Updated database, man-pages and CDT.

2.4 19/02/07 5 Updated panel screenshots.

2.5 25/05/07 7 Updated man-pages.

4 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 5
T A B L E O F C O N T E N T S

1 INTRODUCTION 7
1.1 Purpose . 7
1.2 Scope . 7
1.3 Applicable and Reference Documents . 7
1.4 Glossary. 7
1.5 Abbreviations and Acronyms . 7

2 OVERVIEW 9
2.1 System Architecture . 9
2.2 Processes . 9
2.3 Software Modules . 11
2.4 Test Software . 12

3 CONTROL SERVER 13
3.1 Database . 13
3.2 Server States . 14
3.3 Verbose Mode and Logging . 14
3.4 Error Handling. 14
3.5 Configuration . 15

3.5.1 Controller Electronics System Configuration . 15
3.5.2 Detector Configuration. 18
3.5.3 Directory Tree . 20
3.5.4 Configuration Modules . 20

3.6 Simulation Mode . 20
3.7 Parameter Setup. 21
3.8 Server Extensions. 22
3.9 Maintenance Mode . 22

4 EXPOSURES 23
4.1 Read-Out Modes . 23
4.2 Frame Types . 23
4.3 Windows . 23
4.4 Burst Mode . 24

4.4.1 Raw Data Mode . 24
4.4.2 Internal Burst Mode . 25

4.5 File Formats . 25
4.6 Data File Naming. 26
4.7 Detector Mosaics . 27
4.8 Post-Processing . 27
4.9 Exposure Control . 27
4.10 Timing Accuracy . 29
4.11 Chopping Mode . 29

6 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
5 GRAPHICAL USER INTERFACE 31
5.1 User Interface Classes . 31
5.2 Notebook Area . 33
5.3 Server Preferences and System Configuration . 36

6 TRACEABILITY MATRIX 39
6.1 NGC Requirements from [AD6] . 39
6.2 NGC Software Requirements from [AD7] . 48
6.3 Adaptive Optics Requirements for NGC from [AD20] . 52

7 APPENDIX 55
7.1 Database Classes . 55

7.1.1 Sequencer Class . 55
7.1.2 CLDC Class. 56
7.1.3 ADC Class. 57
7.1.4 Controller Base Class. 57
7.1.5 Acquisition Module Class . 58
7.1.6 System Status Class . 59
7.1.7 Exposure Class . 60
7.1.8 Read-Out Mode Definition Class . 60
7.1.9 Guiding Class . 61
7.1.10 Chopper Interface Class . 61
7.1.11 Server Class . 61

7.2 Reference . 62
7.2.1 ngcircon Server . 62
7.2.2 Command Definition Table . 63
7.2.3 Control Server Class . 71

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 7
1 INTRODUCTION

1.1 Purpose

The document describes the design of the detector control software for infrared applications using
the ESO New General detector Controller (NGC). It addresses to the hardware developer in the lab,
to the detector specialist, to all instrument users including those of external consortia and to all soft-
ware developers interfacing to the infrared detector control software.

1.2 Scope

The new general detector controller will be used for both optical and infrared applications. The
NGC base software [AD9] covers all software functionality which does not yet impose any restric-
tion in what will actually be done with the NGC. The software will become infrared and optical ap-
plication specific when entering the data acquisition and when running exposure loops.
Additionally some optical and infrared application specific devices need to be supported by soft-
ware (shutter, chopper). So in the end there will be two specific control servers. This also implies
the design of two different graphical user interfaces and two database branches. Nevertheless un-
necessary differences should be avoided.

This document describes the server and GUI implementation for infrared applications. The possi-
bility to scale down the control server for pure hardware control gives the oppotunity to use the
server as a core process also in other applications, which then can apply different data taking and
exposure mechanisms. In that sense also the associated engineering GUI may be used for common
purposes.

The setup keywords will have a common root (the NGC dictionary in the software module “dic-
NGC”). Specific extensions will be described in additional dictionaries (TBD). The keyword names
mentioned in this document are based on a first draft of the common dictionary, but they may still
be subject to changes.

1.3 Applicable and Reference Documents

All applicable and reference documents are listed in the “NGC Project Documentation” document,
VLT-LIS-ESO-13660-3906.

1.4 Glossary

See NGC Project Glossary [AD63].

1.5 Abbreviations and Acronyms

See NGC Project Acronyms [AD64].

8 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
[AD1]
[AD2]
[AD3]
[AD4]
[AD5]
[AD6] VLT-SPE-ESO-13660-3207, 1.0 NGC Requirements Specification
[AD7] VLT-SPE-ESO-13660-3670, 0.1 NGC Software Requirements
[AD8] VLT-TRE-ESO-13660-3900, 1.1 New General Detector Controller - Technical Report
[AD9] VLT-SPE-ESO-13660-3836, 0.1 NGC Base Software - Design Description
[RD10] VLT-SPE-ESO-13660-3835, 2.0 NGC Control Software System - Optical Instruments - High-level Software Design Description
[AD11]
[RD12]
[RD13]
[RD14]
[RD15] VLT-MAN-ESO-13640-1388 FIERA CCD Controller Software - User Manual
[RD16] VLT-MAN-ESO-14100-1878 IRACE DCS - User Manual
[RD17]
[RD18]
[RD19]
[AD20] VLT-SPE-ESO-16100-3729, 1.0 SPARTA Adaptive Optics - Specifications for NGC
[AD21]
[AD22]
[AD23]
[AD24]
[AD25] VLT-PRO-ESO-10000-0228, 1.0 VLT Software Programming Standards
[AD26] VLT-MAN-ESO-17210-0667, 1.3 Guidelines for Development of VLT Application Software
[AD27] VLT-SPE-ESO-17212-0001, 5.0 VLT Instrumentation Software Specification
[AD28] VLT-SPE-ESO-17240-0385, 4.0 INS Common Software Specification
[AD29]
[AD30]
[AD31]
[RD32] VLT-MAN-ESO-17210-0619 CCS - User Manual
[RD33] VLT-MAN-ESO-17210-0770 Extended CCS - User Manual
[RD34]
[RD35] VLT-MAN-ESO-17210-0771 CCS Event Tool Kit - EVH - User Manual
[RD36]
[AD37] GEN-SPE-ESO-19400-0794, 3.0 Data Interface Control Document
[AD38]
[RD39] VLT-MAN-ESO-17210-0690 VLT Software - Graphical User Interface - User Manual
[RD40] VLT-MAN-ESO-17240-0866 Real Time Display - User Manual
[RD41] VLT-MAN-ESO-17200-0908 Tools for Automated Testing - User Manual
[RD42]
[RD43]
[RD44]
[RD45]
[RD46]
[RD47]
[RD48]
[RD49]
[RD50]
[RD51]
[RD52]
[RD53]
[RD54]
[RD55]
[RD56]
[RD57]
[RD58]
[RD59]
[RD60]
[RD61]
[RD62]
[AD63] VLT-LIS-ESO-13660-3907, 1.0 NGC Project Glossary
[AD64] VLT-LIS-ESO-13660-3908, 1.0 NGC Project Acronyms
[AD65] VLT-LIS-ESO-13660-3906, 1.0 NGC Project Documentation

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 9
2 OVERVIEW

2.1 System Architecture

The NGC infrared detector control software (NGCIRSW) is running partly on the instrument work-
station (IWS) and on the NGC-LCU, where the physical interface(s) to the NGC detector front end
reside. The NGC-LCU is a PC running a Linux operating system (kernel 2.4 or higher). All system
communication is done via the control server. The control server is configured through configura-
tion files or setup commands. The commands are received via the CCS message system. Image data
is written to FITS files. Internal server data (status, current setup, ...) is mirrored in a database. Set-
up- and control-commands can be sent from a graphical user interface (GUI), which reads back the
server settings from the database. Image data is visualized in one or more real time displays (RTD),
which directly connect to the acquisition processes (see [AD9] for the data transfer mechanism) or
may also read the data from the FITS file created by the control server. File creation is com-
municated through database events. The image data is received asynchronously from the acquisi-
tion processes.

Figure 1 System Architecture

2.2 Processes

The control server communicates with the NGC hardware through driver interface processes
(ngcb2Drv) running locally on the NGC-LCUs where the physical interfaces reside. The exact mech-
anism is described in [AD9]. One driver interface process is launched per physical interface device.
The control server creates one ngcbIFC interface instance per physical device. In case the control
server is not running locally on the NGC-LCU, the interface would include the driver interace pro-
cess (using the derived ngcbIFC_MSG class instead of ngcbIFC) as it is shown in Figure 2.

NGC-
Network

NGC-
Network

NGC-
Network

NGC-
Network

IWS

DET

NGC-LCU1

PCI-Bus
Interfaces

LAN

NGC-LCUn

Acquisition
Process

ngcb2Drv

Acquisition
Process

Control
Server

GUI

RTD

RTD

RTD

Command

FITS-
Files

Config.-
Files

Database

Acquisition
Process

ngcb2Drv

ngcb2Drv

10 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
Figure 2 Control Server and Driver Interface Process

The acquisition processes are also launched and controlled by the control server. One ngcdcsACQ
class instance (see [AD9]) per process is created in the control server to build the command interface
and the asynchronous data interface. Nevertheless this does not imply that a process is actually
running “on” this module in all operational modes. So it may happen that one or more of those
ngcdcsACQ instances remain in an “idle” state during an exposure.

For maintenance and development operations all processes shown on the IWS side may run also lo-
cally on one of the NGC-LCUs. For software testing and software development all processes may
run in simulation mode on the IWS.

In normal operation the driver interface process(es) on the NGC-LCU and the acquisition processes
are allowed to receive commands only from the control server. There is no direct interaction fore-
seen between these processes and any higher level software except the data connection between the
RTD and the acquisition process. For debugging purposes and software development it is possible
to send commands directly to all processes (TBD).

The execution of the control processes normally does not require any special user privileges to be
granted by the operating system. However the acquisition processes on the NGC-LCU benefit from
the real-time capabilities granted by the Linux operating system to processes with super-user privi-
leges.

ngcbIFC

interface->ReadAddr()
interface->WriteAddr()

ngcbIFC_MSG

ngcb2Drv:

interface->ReadAddr()
interface->WriteAddr()

Device
Driver

ngcbIFC

interface->ReadAddr()
interface->WriteAddr()

ControlServer:

ControlServer:

CCS Message
Handle

Command

Running locally on NGC-LCU

Running somewhere Running locally on NGC-LCU

Device
Driver

System

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 11
2.3 Software Modules

All software modules are under CMM configuration control.

• ngcdrv - The device driver for the PCI-Bus back-end card.

• ngcb - The NGC basic software module containing the driver interface library
(ngcbDrv) for communication and DMA, some basic i/o tools, a portable
threads- and priority-control implementation and the C++ base classes for
general system access. This module also provides a hardware simulation
mechanism for the NGC controller.

• ngcpp - The DMA data-acquisition and pre-/processing module.

• ngcdcs - The NGC detector control software base module implementing the classes for
the NGC hardware modules (sequencer, CLDC, ADC) and the interfaces to the
data acquisition.

• ngcircon - The NGC system coordination module for infrared applications. This includes
the infrared control server instance and all additional infrared specific device
classes (chopper, special ADC or CLDC hardware releases, etc.). It also contains
all required scripts for system startup and shutdown.

• ngc[ir?]gui - An engineering GUI used for direct system interaction and data acquisition. It
could also be part of either the ngcircon or ngcdcs module (TBD).

A dictionary, which is common to both infrared and optical systems, is stored in the dicNGC soft-
ware module.

The software module ngcarch provides automatic installation procedures for all the mentioned
software modules.

12 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
Figure 3 Module Dependencies

2.4 Test Software

Test scripts for the TAT (see [RD41]) are developed in parallel to the software module code genera-
tion. Test configuration files are created for various virtual system architectures and detector assem-
blies to cover all possible ranges of complexity. The DMA data-acquisition and pre-/processing
module ngcpp does not contain TAT test scripts, but fully working test/template acquisition pro-
cesses instead, which are then embedded in the test scripts and test configuration files of the higher
level ngcdcs and ngcircon modules.

ngcb
ngcbDrv
ngcbIFC, ngcbSIM
ngcbOBJ
ngcbMOD
ngcbTHREAD, ...

ngcpp

ngcdcs
...SEQ
...CLDC
...ADC

...ACQ_DATA

...ACQ

...EVH

...Server

ngcircon ngco...

(infrared specific) (optical specific)

ngcarch

ngc[ir?]gui

dicNGC

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 13
3 CONTROL SERVER

The control server is based on the CCS Event Tool Kit EVH (see [RD33], [RD35]). A base class
(ngcdcsEVH) and a basic engineering server instance (ngcdcsEvh - see section 7.2.1) are part of the
ngcdcs module. The infrared control server instance (ngcircon) derives from the ngcdcsEVH class
and introduces additional, specific behavior.

Several instances of the control server may run within the same environment. In this case an in-
stance label (string) must be passed via the “-inst” command line option to distinguish between the
systems. The instance label is used as appendix “_<label>” for both the database branch (see sec-
tion 3.1) and for the server process name registered with the CCS environment.

All communication with the control server is done via the CCS message system and the online data-
base. Any process in the VLT environment, which is able use to this communication structure, can
directly interface to the system. In particular this involves the execution of test templates via BOB
and the VLT control software HOS sequencer.

3.1 Database

Database classes for the controller modules and for the data acquisition are defined in the ngcdcs
module (see section 7.1). This also contains base classes for exposure definition and for the overall
system status (state, sub-state, system parameter-table, etc.).

The infrared detector control and data acquisition server (ngcircon) uses a database class (ngcircon-
SERVER.class), which puts all these classes together. The file ngcircon.db finally contains the data-
base branch definition. This file has to be included in the DATABASE.db file of the environment.
The following macros can be defined before each inclusion:

#define ngcirconINSTANCE ngcircon_myInstance
#define ngcirconROOT :Appl_data:...:myPoint
#include “ngcircon.db”

ngcirconINSTANCE becomes the alias of the database point for this branch. The appendix <myIn-
stance> should be the instance label as passed to the server with the “-inst” command line option. If
not defined, ngcirconINSTANCE defaults to “ngcircon” (which is used by the server when setting
no instance label). ngcirconROOT is the absolute path of the database root. If not defined it defaults
to <ngcirconINSTANCE>.

The basic structure of the database is as follows:

 --o <alias>ngcirconINSTANCE --|--o system (NGC system parameters)
 |--o exposure (exposure parameters)
 |--o mode (read-out mode parameters)
 |--o guiding (guiding mode parameters)
 |--o chopper (chopper interface)
 |--o seq_<i> (sequencer parameters)
 |--o cldc_<i> (CLDC parameters)
 |--o adc_<i> (ADC module parameters)
 |--o acq_<i> (acquisition module parameters)

The branches for the sequencer-, CLDC-, ADC-, and acquisition classes are indexed. One branch
will be created per module.

14 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
3.2 Server States

The server state is called “OFF” when no server process is running. Starting the server initializes the
state to “LOADED”. Then it is possible to send further commands to the control server. If a default
detector configuration was specified in the system configuration, the detector configuration is load-
ed into the server. The command STANDBY brings the server to the “STANDBY”-state. If the server
is not running locally on the NGC workstation, a driver interface process is started locally on the
NGC workstation. The acquisition process is not yet running. The command ONLINE opens the
connection to the physical device(s) and configures all modules according to the current system-
and detector-configuration and also launches the acquisition process, if one was defined (“ON-
LINE”-state). The voltage telemetry of all CLDC instances is automatically checked before going to
“ONLINE”-state. In “ONLINE” state the voltage telemetry can be checked at all times. Before going
to “ONLINE”-state the SW reads all relevant product information (serial number, product code, re-
vision number) from the hardware. This information is used to check the actual system configura-
tion for consistency and to introduce revision specific behavior. It is possible to go directly from
“LOADED”- to “ONLINE”-state and vice-versa (with the command OFF). When going from “ON-
LINE” to “STANDBY” the acquisition process terminates, the sequencer is stopped, the CLDC volt-
age outputs are all disabled and the connection to the physical device is closed. The OFF command
additionally terminates the driver interface process.

The detector front-end can be reset using the RESET command. This can be done in any state except
“OFF”. The acquisition process will always be stopped in this case.

The system is set to “OFF”-state when an EXIT command is received.

The server sub-state is “busy” during command execution. In case the server was not able to recover
by itself from an error, the sub-state is “error” (i.e. the server is in error state). While an exposure is
running, the sub-state is “active”. In all other cases the sub-state is “idle”.

The server state is stored in the database attributes ‘<alias>ngcircon:system.state/subState’. A
translation of the state numbers into a string value is stored in ‘<alias>ngcircon:system.stateName/
subStateName’.

3.3 Verbose Mode and Logging

Verbose messages can be printed on the standard output stream of each process. The detail is given
by a verbose level, which is also passed as parameter to the control server (“-v <level>” command
line option). To make the messages of the sub-processes visible, it is required to start those processes
in a separate terminal (this is controlled with the “-xterm” command line option).

Error - logging will be done with the standard CCS error logging facility, which includes the auto-
matic logs like tracing of any received/sent command (see [AD27], [RD32]). Additionally the ver-
bose output can be logged in a detail depending on a given log-level for maintenance/debugging
purposes. Operational logs are TBD.

3.4 Error Handling

The CCS error mechanism [RD32] provides a classification scheme for application specific errors.
The NGC base software uses this mechanism. The introduction of new error codes is limited to cas-
es, where specific actions (“reset”, “restart server”, “restart CCS environment”, “reboot” etc.) are re-
quired. Other errors, which leave the system still in a valid state without further interaction
(“parameter out of range”, “invalid file name”,...) are trapped by an overall system error

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 15
(ngcbERR_SYSTEM, ngcdcsERR_SYSTEM) plus an appropriate message string. The meaning of the
error class and the possibly needed interactions are described in a help file (.hlp), which can be dis-
played with the standard CCS-tools (also with the logMonitor). The actual error reason (“timeout”,
“link channel error”,...) is given in an associated error message string. A draft list of possible error
classes is given in [AD9].

3.5 Configuration

The overall configuration is divided into controller electronics system configuration and detector
configuration. The controller electronics system configuration describes the hardware system used.
The detector configuration describes the usage of the system with respect to the connected detec-
tor(s). There are cases, where more than one detector is driven by the same hardware and the
switch between the detectors has to be done by applying a different detector configuration (i.e. en-
able/disable a different set of CLDC- and/or ADC-modules). To reflect such cases, where different
detector configurations are used on the same system configuration (or vice-versa the same detector
configuration is used on different system configurations), the two files have to be kept separated in
order to avoid to unnecessarily duplicate the information.

3.5.1 Controller Electronics System Configuration

The system configuration is given in a configuration file (short FITS format). The file can be speci-
fied via the “-cfg” command line option of the control server. A new system configuration file can
be loaded at server run-time via a setup command (DET.SYSCFG <filename>). The file content is
translated by an upload-method into a structure of type ngcdcs_syscfg_t. A CheckSys-
Cfg(ngcdcs_syscfg_t cfg) member function will check ranges and consistency of the members of such
a structure. The structure is applied via the Configure(ngcdcs_syscfg_t cfg) method, which also fore-
sees two call-backs to configure additional stuff before and after internal configuration is done. So it
is not mandatory to fill the structure by loading a file as it is given in the below example. The con-
figuration may still be loaded from an on-line database or whatever file format by adding a special
uploading function or changing the default one. However the loading of such a keyword based file
has been proven to be robust and fail-safe in the past and it is also easy to be inspected by view in
its raw loadable format. An editing tool (ngc[ir]guiCfg) for the system configuration is provided by
the ngc[ir]gui module (see section 5.3).

The system configuration includes all information to identify the hardware configuration including
the interface device names and the computing architecture (host names, environments,...). Here the
controller interfaces are defined and associated to the linear list of hardware modules. Each device
is declared via a block of keywords giving the device name (DET.DEVi.NAME), the host name
(DET.DEVi.HOST), where the physical interface resides, and the name of the CCS environment
(DET.DEVi.ENV) running on this host. If no host name is specified (empty string), the interface is
assumed to be on the same computer where also the control server is running. In this case no addi-
tional driver interface process will be launched and the environment name is ignored (like the op-
tional “driver interface process” name in DET.DEVi.SRV). If the host name is set to the local host
name ($HOST), the driver interface process would be started even if it was not really needed. This
is used for testing the software when running in simulation mode on a single workstation. Finally
an optional device type (DET.DEVi.TYPE) can be given in order to use other interface devices de-
rived from the ngcbIFC class.

The NGC hardware modules (sequencer, CLDC, ADC) are realized in SW also in a modular way
(C++ classes ngcdcsCLDC, ngcdcsSEQ, ngcdcsADC, - see [AD9]). One class instances of the respec-
tive type is created for each hardware module in the NGC detector front end. The interface object
(as specified via the DET.DEVi keywords) is given as parameter to the module class instances to-

16 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
gether with the linking route through the interface to the target module. So finally the server will just
see linear lists of sequencer-, CLDC- and ADC-modules independent from the nesting structure of
the NGC hardware module network(s).

Each of the hardware modules (SEQ, CLDC, ADC) gets one interface device assigned, through
which it is accessed. The assignment is done via a reference index in the DET.SEQi.DEVIDX,
DET.CLDCi.DEVIDX, DET.ADCi.DEVIDX keywords. For each of the modules an optional name
can be defined.

The acquisition modules also have to be declared here. For each DMA device one module needs to
be defined. This does not yet define the actual process, which will be launched by the module. The
modules are attached to individual sequencer instances with the DET.ACQi.SEQIDX keyword.
Each module refers to exactly one sequencer, which “produces” the detector data received by it.
Several acquisition modules may be associated to the same sequencer instance. This association is
needed to have the information, when the processes need to be (re-)started or stopped. If no index is
defined a default value of 1 (first sequencer) will be used. The negative index (-1) tells the system not
to associate the acquisition module to any sequencer.

There is no restriction in the number of hardware modules and the number of acquisition modules.
So the system may be configured for pure hardware control (no acquisition modules) or even for
pure data acquisition (no controller interface device, no hardware module).

In case several sequencer modules are in the system, it will be possible to start/stop them (plus the
process on the associated acquisition modules) individually or all at once (synchronously). If several
CLDC modules are in the system, it would likewise be possible to enable/disable them individually
or all at once. But here there is the restriction, that a (checked) voltage configuration file must have
been loaded into such a CLDC module, before it can be enabled automatically with an “enable all”
command.

The controller electronics system configuration parameters are described in a dictionary [AD37]. Be-
fore going to “ONLINE”-state the actual hardware is checked against this configuration and an er-
ror is reported in case something does not match.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 17
Example of System Configuration File:

Server configuration
DET.DETCFG “test.dcf”; # default detector configuration

Exposure frame configuration
DET.FRAM.FORMAT “extension”; # default FITS-file format
DET.FRAM.MULTFILE F; # generate multiple files
DET.FRAM.NAMING “request”; # default FITS-file naming scheme

Device description
DET.DEV1.NAME “/dev/ngc0_com”; # associated device name
DET.DEV1.HOST ““; # host where interface resides
DET.DEV1.ENV “$RTAPENV”; # server environment name
DET.DEV1.SRV ““; # optional server name
DET.DEV1.TYPE ““; # optional type

CLDC modules
DET.CLDC1.DEVIDX 1; # associated device index
DET.CLDC1.ROUTE “2”; # route to module
DET.CLDC1.AUTOENA T; # auto-enable at online
DET.CLDC1.MARGIN 0.2; # margin for voltage check (in volts)
DET.CLDC1.NAME “CLDC 1”; # optional name
DET.CLDC2.DEVIDX 1; # associated device index
DET.CLDC2.ROUTE “5,2”; # route to module
DET.CLDC2.AUTOENA T; # auto-enable at online
DET.CLDC2.MARGIN 0.2; # margin for voltage check (in volts)
DET.CLDC2.NAME “CLDC 2”; # optional name

Sequencer modules
DET.SEQ1.DEVIDX 1; # associated device index
DET.SEQ1.ROUTE “2”; # route to module
DET.SEQ1.NAME “Sequencer 1”; # optional name
DET.SEQ2.DEVIDX 1; # associated device index
DET.SEQ2.ROUTE “5,2”; # route to module
DET.SEQ2.NAME “Sequencer 2”; # optional name

ADC modules
DET.ADC1.DEVIDX 1; # associated device index
DET.ADC1.ROUTE “2”; # route to module
DET.ADC1.NUM 4; # number of enabled ADC units on board
DET.ADC1.BITPIX 18; # number of bits per pixel
DET.ADC1.FIRST T; # first in chain
DET.ADC1.PKTCNT 1; # packet routing length
DET.ADC1.NAME “ADC-Module 1”; # optional name
DET.ADC2.DEVIDX 1; # associated device index
DET.ADC2.ROUTE “5,2”; # route to module
DET.ADC2.NUM 4; # number of enabled ADC units on board
DET.ADC2.FIRST F; # first in chain
DET.ADC2.PKTCNT 0; # packet routing length
DET.ADC2.NAME “ADC-Module 2”; # optional name

Acquisition modules
DET.ACQ1.DEV “/dev/ngc0_dma”; # DMA device name
DET.ACQ1.HOST “$HOST”; # host name for acq.-process
DET.ACQ1.CMDPORT 0; # acq.-process command port (optional)
DET.ACQ1.DATAPORT 0; # acq.-process data port (optional)
DET.ACQ1.NCLIENT 2; # max. number of data server clients
DET.ACQ1.SEQIDX 1; # associated sequencer instance
DET.ACQ2.DEV “/dev/ngc1_dma”; # DMA device name
DET.ACQ2.HOST “$HOST”; # host name for acq.-process
DET.ACQ2.CMDPORT 0; # acq.-process command port (optional)
DET.ACQ2.DATAPORT 0; # acq.-process data port (optional)
DET.ACQ2.NCLIENT 2; # max. number of data server clients
DET.ACQ2.SEQIDX 1; # associated sequencer instance

18 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
3.5.2 Detector Configuration

Once the system is basically configured, a certain configuration for a detector (or a detector mosaic)
needs to be applied. Similar to the controller electronics system configuration the detector configu-
ration is also stored in a configuration file (short FITS format), which can be loaded at server run-
time via a setup command (DET.DETCFG <filename>). The file content is translated by an upload
method into a structure of type ngcdcs_detcfg_t. If the system is in online state, the configuration is
directly applied to the hardware. Otherwise a preset is done, which is applied when going online at
a later time.

In the detector configuration file the chips used in this setup are defined. The chips get a name, an
id, a type and some more information (like position/gaps in a mosaic) assigned. Most of these
(DET.CHIPi.XXXX) keywords are just forwarded to the FITS-file header. The DET.CHIPi.NX/NY
keywords define the detector dimension used as a basis for all images and windows. The
DET.CHIPS keyword defines the number of chips in a mosaic (default value is “1”). There is also a
keyword to assign this chip to a certain acquisition module (DET.CHIPi.ACQIDX). This is required
to pass the right frame dimensions and window parameters to the associated acquisition process. A
zero index means that the chip definition applies to all acquisition modules.

The detector configuration file defines the clock pattern configuration files, which have to be loaded
into the sequencer module(s) for this detector/mosaic (DET.SEQi.CLKFILE), and also the default
values for the global state dwelltime (DET.SEQi.TIMEFAC/DET.SEQi.TIMEADD) and the “continu-
ous mode” flag (DET.SEQi.CONT). The DET.SEQi.RUNCTRL keywords give the information which
sequencer instances will be started synchronously (i.e. will react on the external run-signal). The de-
tector voltage configuration files (DET.CLDCi.FILE) have to be specified for all CLDC modules
which are used in this detector configuration. Not used CLDC modules can simply be skipped and
their outputs will not be automatically enabled together with the other ones.

For each ADC module declared in the system configuration some keywords can be entered to tune
the A/D conversion (delays, offsets), to set the modules to various simulation modes or to enable/
disable groups of ADCs on this module.

The detector configuration also declares the read-out modes to be used with the given chip(s). Each
read-out mode is defined by a block of keywords assigning the name of the mode
(DET.READi.NAME), specifying the sequencer program(s) to be loaded (DET.READi.SEQi), the ac-
quisition processe(s) to be launched on the defined acquisition modules (DET.READi.ACQi), a de-
fault parameter setup file (short FITS format) to be loaded, whenever the mode (DET.READi.DSUP)
is selected, and a short description string (DET.READi.DESC). A default read-out mode can be spec-
ified by its index (as given in DET.READi). The default read-out mode is applied, whenever the file
is loaded respectively when the server switches to online state after the file has been loaded.

The detector configuration parameters are described in a dictionary [8].

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 19
Example of Detector Configuration File:

Detector system definition
DET.NAME “myName”; # detector system name
DET.ID “myId”; # detector system id
DET.CHIPS 1; # number of chips in mosaic

Chip definition
DET.CHIP1.NAME “myChipName”; # chip name
DET.CHIP1.ID “myChipId”; # chip id
DET.CHIP1.TYPE “myChipType”; # chip type
DET.CHIP1.DATE “2005-08-03”; # chip installation date
DET.CHIP1.LIVE T; # chip live or broken
DET.CHIP1.PXSPACE 1.0E-06; # space between pixels (meters)
DET.CHIP1.PSZX 1.0; # size of pixel in x (mu)
DET.CHIP1.PSZY 1.0; # size of pixel in y (mu)
DET.CHIP1.INDEX 1; # unique number in mosaic
DET.CHIP1.X 1; # x location in mosaic
DET.CHIP1.Y 1; # y location in mosaic
DET.CHIP1.XGAP 0; # gap between chips along x
DET.CHIP1.YGAP 0; # gap between chips along y
DET.CHIP1.RGAP 0.0; # angle of gap between chips
DET.CHIP1.OUTPUTS 32; # number of outputs
DET.CHIP1.NX 1024; # number of pixels along x
DET.CHIP1.NY 1024; # number of pixels along y
DET.CHIP1.ADJUST "FREE"; # window adjustment (CENTER|FREE)
DET.CHIP1.ADJUSTX 1; # adjustment step in x
DET.CHIP1.ADJUSTY 1; # adjustment step in y
DET.CHIP1.ACQIDX 0; # map to acquisition module

CLDC module setup
DET.CLDC1.FILE “test.v”; # voltage definition file
DET.CLDC2.FILE “test.v”; # voltage definition file

Sequencer module setup
DET.SEQ1.CLKFILE “test.clk”; # clock pattern file
DET.SEQ1.TIMEFAC 2; # dwell time factor
DET.SEQ1.CONT F; # continuous mode
DET.SEQ1.RUNCTRL T; # external run-control

ADC module setup
DET.ADC1.DELAY 0; # conversion strobe delay (ticks)
DET.ADC1.ENABLE 4; # number of enabled ADC units
DET.ADC1.OPMODE 0; # ADC operation mode
DET.ADC1.SIMMODE 0; # ADC simulaton level
DET.ADC1.PKTSIZE 2; # packet size
DET.ADC1.CONVERT1 T; # convert on strobe 1
DET.ADC1.CONVERT2 F; # convert on strobe 2

DET.READ.DEFAULT 2; # id of default readout mode

Read-out mode definitions
DET.READ1.NAME “Uncorr”; # readout mode name
DET.READ1.ACQ1 “ngcppSimple16”; # acquisition process on module 1
DET.READ1.ACQ2 “ngcppSimple16”; # acquisition process on module 2
DET.READ1.SEQ1 “test.seq”; # program for sequencer 1
DET.READ1.DSUP ““; # default parameter setup
DET.READ1.DESC “uncorrelated readout”;

DET.READ2.NAME “Double”; # readout mode name
DET.READ2.ACQ2 “ngcppTemplate”; # acquisition process 2
DET.READ2.SEQ1 “test.seq”; # program for sequencer 1
DET.READ2.DSUP ““; # default parameter setup
DET.READ2.DESC “double correlated readout”;

20 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
3.5.3 Directory Tree

Unless an absolute path is defined, all file locations are relative to the location of the file they are re-
ferred from. So the parent directory of the actually loaded system configuration file would become
the reference path for the referred detector configuration file and for the parameter default setup file
in the system configuration scope. The parent directory of the actually loaded detector configuration
file will become the reference path for the referred voltage setup files, for the clock pattern configu-
ration files, the sequencer programs and also for the parameter default setup files in the detector
configuration scope.

This scheme basically introduces one main entry point (the directory of the system configuration
file). All other paths are derived from there and so the directory tree is freely adaptable through the
filename entries themselves (i.e. “../SEQ/myProgram.seq”). The default search path for the system
configuration file is “$INS_ROOT/SYSTEM/COMMON/CONFIGFILES/”. The ngcircon server intro-
duces a default system configuration file (“NGCIRSW/ngc.cfg”), which is used in case nothing had
been specified via the “-cfg” server command line option, whereas the ngcdcsEvh engineering serv-
er uses a built-in default configuration in this case (i.e. one main board + one acquisition module).

3.5.4 Configuration Modules

The configuration files and sequencer programs are stored in instrument- or detector-specific con-
figuration modules, which are under CMM configuration control. This also applies to maintenance
and test configurations. Usually the configuration files are part of the NGC-system delivery. In cases
where detector development is done outside, the respective instrumentation team is responsible for
the development of the configuration files. Templates and a graphical editing tool for the clock pat-
terns will be provided.

3.6 Simulation Mode

The default operation mode is the so-called “NORMAL” mode, where all physical devices are ac-
cessed. The default mode can be changed with the DET.CON.DFEMODE keyword in the system
configuration file. The value can be either “NORMAL” or “HW-SIM” or “LCU-SIM”. The keyword
is overwritten by the “-sim” server command line option, which would force the server to start in
the given simulation mode (HW or LCU) in any case. At server run-time the operation mode can be
changed with the commands “SIMULAT -function HW|LCU” and STOPSIM.

In HW-simulation mode the NGC hardware is simulated using the ngcbSIM simulator instances in
the interface devices. The acquisition process is then also started in data simulation mode. The data
timing (simulation interval) is set according to the current detector integration time (DIT). More re-
alistic timing simulation may be TBD. The simulation can be started on a single workstation by set-
ting the host names for the acquisition process(es) and for the interface devic(es) to the local host. In
this case the launch of the driver interface process can also be skipped by giving an empty string as
interface device host name. The interface would then be created as “local” interface.

The LCU-simulation mode additionally forces all processes to be started on the hosting workstation
(IWS).

The current operation mode is stored in the database attribute ‘<alias>ngcircon:system.opMode’.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 21
For software testing it is possible to emulate various errors:

• No acknowledge from hardware module (“no_ack”)

• Invalid address on a NGC hardware module (“ivld”)

• Sequencer FIFO empty (“seq_empty”)

• Sequencer goes to IDLE state (“seq_idle”)

• I/O error on all communication links (“io_err1,2,3”)

• I/O error on data link (“data_io”)

• Error when writing data to a file (“data_file”)

• Server blocks forever (“block”)

Others may be added. The emulation can be done with the low-level maintenance command “NGC
simerr <identifier>” (see 7.2.2). A specific command for this purpose and a more convenient identifi-
er assignment is TBD.

3.7 Parameter Setup

Parameters are sent via the command

“SETUP -function <name1> <value1> [<name2> <value2>...]”

The order of the parameters within such a setup command is insignificant. The parameter names
typically start with “DET.”. The DET category may be indexed. The value of a parameter can be re-
trieved with the command

“STATUS -function <name1> <value1> [<name2> <value2>...]”

The parameter values are returned as a list in the same order as given in the command:

<name1> <value1>[, <name2> <value2>,...]

String values are enclosed in double quotes. The command may return intermediate replies when
the list becomes too long.

Additionally to the common system parameters, the data pre-processing and the sequencer pro-
gram may introduce an arbitrary number of application specific parameters. These parameters
have a meaning only in their limited context, but nevertheless they may have an impact on the
overall system, as they may require sequencer reloading or an acquisition process restart. In order
not to do those time consuming functions too often, their system influence needs to be described
somehow. To achieve this, the application specific parameters are stored in a parameter list, which
for each element carries some flags for specific actions to be performed, when the parameter value
changes (see [AD9]). The list also eases to keep an overview of all parameters in use (i.e. to visualize
and to set them in a graphical user interface). Range and validity checks are done by the control
server. Only after successful application of the parameter the value in the list will be updated ac-
cordingly. Now the problem arises how a certain parameter may enter this list:

Generally all parameters are described in one or more dictionaries (see [AD37]). Those dictionaries
will contain both the common system parameters and the application specific ones but define rather
all possible parameters, which may be set at some time, than those, which currently are really in use.
Nevertheless any parameter, which may enter our list, must be defined in a dictionary in order to

22 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
be visible to the outside world. The dictionary also defines, which of the parameters will be added to
the FITS-headers of the produced data files.

The parameters used by an acquisition process can be directly imported from the process itself (see
[AD9]). So the control server knows which process uses which parameters. The only thing to be
done here is to ensure, that the parameters of all acquisition processes used by a certain detector
configuration are declared in a dictionary. Nevertheless there may also be parameters, which are
only used within a sequencer program, but not in any acquisition process. In order to add them to
our list, they need to be declared with a default value in a parameter default setup file (.dsup). These
setup files may be defined within the scope of the system configuration, of the detector configura-
tion or of the read-out mode definition. This scope also defines a parameters “life time” in the list. A
parameter declared at detector configuration level will be removed or reset to (a possibly new) de-
fault, when a new detector configuration is loaded. A parameter declared at system configuration
level will be removed or reset to (a possibly new) default when a new system configuration is load-
ed. The command

“SETUP -default”

will apply all default values described in the parameter default setup files.

The dynamic parameter list is stored as a table (fields: name, value) in the database attribute
‘<alias>ngcircon:system.param’. It may also be retrieved by sending the STATUS command with
no parameter.

3.8 Server Extensions

Server extensions can be built by deriving from the ngcdcsEVH class (see appendix section 7.2.3).
Post-processing callbacks may be added as described in section 4.8. Hooks for special actions at
server state switching (before and after “online”, before and after “standby”, before and after “load-
ed”), when setting parameters and upon exposure events may be installed. The system- and detec-
tor-configuration file loading functions LoadSysCfg() and LoadDetCfg() can be overloaded to support
different file formats. The ConfigureCB() call-back function can be overloaded to install interfaces,
which are derived from the ngcbIFC class and to configure parts of the system, which are not cov-
ered by the basic control server. Module creation hooks can be installed to create derived versions of
the sequencer-, CLDC-, and ADC-modules and also of the acquisition module (see [AD9]). The
modules are created when applying the system configuration with the Configure() method as de-
scribed in section 3.2. The modules are deleted with the Shutdown() method, which is always called
as first step in the Configure() method. The Shutdown() method provides two call-backs to shutdown
application specific stuff before and after internal shutdown is done. Calling Shutdown() a second
time in direct succession will always have no further effect.

3.9 Maintenance Mode

The maintenance service mode as described in [AD9] is also implemented in the ngcdcsEVH class, as
this derives from the ngcdcsSRV class. The inheritance keeps a backwards compatibility for the test
macros developed for testing the prototype hardware. The low-level service commands can be
passed through via the NGC “cmd-string” command as defined in the command definition table
(see section 7.2.2). The internal command shell for these functions can also still be launched with the
-shell command line option. Once the control servers for infrared and optical applications are fully
operational, this maintenance service mode may be removed (TBD).

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 23
4 EXPOSURES

4.1 Read-Out Modes

The read-out modes, which are defined in the detector configuration file (see section 3.5.2), can be
selected at run-time with a setup command either by their name (DET.READ.CURNAME) or by
their “id” (DET.READ.CURID). The setup usually requires the sequencer(s) to be stopped, reloaded
and restarted, when the mode changes. The “stop if running” and “restart if it has been running before”
mechanism will be executed automatically where required and is transparent to the caller of the set-
up command. The mechanism may also be applied on other setup parameter changes, in case those
parameters are used in the sequencer program.

The available read-out modes are stored as a table (fields: name, id, desc) in the database attribute
‘<alias>ngcircon:mode.readModeList’. The current read-out mode is stored in the attribute
‘<alias>ngcircon:mode.readModeName/.readModeId’ (as integer reference id) and additionally in
the attribute ‘<alias>ngcircon:mode.readModeName/.readModeName’ (as string). A list of all avail-
able read-out modes can be retrieved with the command “STATUS -function DET.READ.AVAIL”.

4.2 Frame Types

The application specific acquisition processes may produce an arbitrary number of frame types.
Each frame type has two flags associated to define whether frames of that type will actually be pro-
duced by the pre-processor and whether frames of that type should be stored to disk during an ex-
posure. A software window can be defined individually for each type and for each acquisition
module using the FRAME command as described below.

Usually an exposure is finished, when the INT-frame has been received on the instrument worksta-
tion. As it is required by some read-out modes to store also other frames during one exposure, a
more general exposure break condition has to be applied: each frame generated by the acquisition
process and selected to be stored can have a counter, that indicates the number of frames of that
type, that must be stored during the exposure. The exposure is finished, when all of these frames
have reached their break condition. A break condition of zero means that frames of this type should
be stored on a “best effort” basis (i.e. “store as much as possible until the exposure is finished”). If all
break conditions are set to zero, the exposure will run and store frames until it is aborted. All that
can be controlled via the command:

“FRAME [-module <acq.-module id>] -name <frame name> [-gen T|F] [-store T|F]
[-break <counter>] [-win sx sy nx ny]”

The frame setup can be done “per process” by specifying an acquisition module id. If the module id
is zero or if no module id is passed, the command will refer to “all” modules.

The available frames are stored as a table (fields: name, generate, store, breakCond, sx, sy, nx, ny) for
each acquisition module in the data base attribute ‘<alias>ngcircon:acq_<i>.frame’. The frame list
can also be received with the command “STATUS -function DET.READ.FRAMES”.

4.3 Windows

The setup parameters DET.WIN.STRX, DET.WIN.STRY, DET.WIN.NX, DET.WIN.NY define the
format and position of the data-frame within the chip. DET.WIN.STRX/Y always refers to the lower
left corner. The sequencer module will derive its default read-out window (DET.SEQi.WIN.STRX/
Y, DET.SEQi.WIN.NX/Y) from these parameters. For detector mosaics (DET.CHIPS > 1, see section

24 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
4.7) the window is by default intended to be applied “per chip”. Nevertheless both sequencer pro-
gram and the associated acquisition module(s) may use these parameters in an application specific
way to read-out detector overlapping windows. Whether and how a read-out window is applied
depends on the detector architecture. The acquisition process will always know, what it will get,
and will then setup the right DMA and sort the data properly.

The window used by the acquisition process is usually overtaken from the DET.SEQi.WIN parame-
ters of the sequencer, to which it is associated. When the read-out window changes, the sequencer
program is reloaded with the new window parameters and the acquisition process is restarted with
the ‘-nx, -ny’ command line options set accordingly. In some cases this rule might be impractical and
the window for the acquisition process needs to be set independently. The DET.ACQi.WIN.STRX/Y,
DET.ACQi.WIN.NX/Y parameters are introduced for this purpose. Changes in the DET.SEQi.WIN
parameters will always automatically change the corresponding DET.ACQi.WIN parameters of all
associated acquisition processes, but not vice-versa.

Window read-outs can be disabled via a parameter, which should be flagged in the default parame-
ter setup file for read-out modes which do not support a window read-out of the detector. The win-
dow setup parameters may automatically be adjusted following several detector specific rules
which are defined in the detector configuration:

The DET.CHIP.ADJUST parameter specifies the read-out window adjustment mode for the detec-
tor. Valid values are:

“CENTER” - window is automatically centered
“FREE” - window is only adjusted to multiples of
 the DET.CHIP.STEPX,STEPY parameters

The DET.CHIP.STEPX/Y parameters specify the adjustment step in x/y-direction for window read-
out. Adjustments are done in multiples of this value.

Multiple windows (i.e. regions of interest) can be read-out by applying a proper set of additional
window parameters within the scope of the sequencer program (see [AD9] for details). This mecha-
nism is fully application specific.

Software windows are applied on a per-frame basis (see section 4.2). In this case the data transfer
task just requests a window from the acquisition process. This is mainly used to save transfer and
storage overheads.

4.4 Burst Mode

In some cases it might be necessary to store larger amounts of raw data or to sample at a very high
frame-rate. If the frame rate is too high (> 200 Hz on most non-real-time UNIX platforms) the DMA-
interrupt latency becomes dominating and no more CPU-power is left for pre-processing. Two
kinds of “burst modes” are used to cover these two cases.

4.4.1 Raw Data Mode

The raw data mode is activated by sending the setup command

“SETUP -function DET.ACQi.BURST.NUM <num>”

If num is greater than zero, it indicates the number of [DET.ACQi.WIN.NX, DET.ACQi.WIN.NY]-di-

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 25
mension sample-frames to be stored in the burst buffer. If an exposure is started both sequencer
and acquisition are restarted (the DET.SEQi.CONT flag is ignored in that case) and the buffer is
filled until num sample-frames (16 bit short integer) are stored. At the end of the exposure an INT-
frame (containing only dummy data) is transferred. The transfer of the sample-frames starts imme-
diately and runs in parallel to the data recording. A 3 X 2 MBytes input ring-buffer is used to ensure
interrupt stability. This means that at least 2 MBytes of data have to be created to fill the DMA. The
setup parameter DET.ACQi.BURST.SKIP indicates the number of frames to be skipped before
starting to transfer.

This mode can be activated regardless of the currently selected read-out mode. Setting
DET.ACQi.BURST.NUM to zero deactivates the burst-mode and restores the defined acquisition
process for the current read-out mode. The default burst-process (ngcppBurst) applying the de-
scribed mechanism may be changed by specifying a user-defined burst-process
(DET.ACQi.BURST.PROC).

4.4.2 Internal Burst Mode

The internal burst is activated by sending the setup command

“SETUP -function DET.ACQi.BURST.NUM <-num>”

The negative value indicates that an internal burst-buffer should be applied. In this case the DMA is
enlarged by a factor of num. The data processing is not affected in this case as soft-interrupts are
created for each sub-division. The calculation thread will wait for num buffers and will then process
them within one step. This helps to workaround the 200 Hz interrupt limitation, but depending on
the actual processing it may slow down the acquisition performance as a whole (if for example
least-square fit or standard deviation have to be solved within the num buffers).

Also in this case a value of zero for DET.ACQi.BURST.NUM deactivates the burst-mode.

4.5 File Formats

There are several FITS file formats supported to cover various situations. The simplest case is, that
all frames produced during one exposure are stored into individual files (DET.FRAM.FORMAT =
“single”). This is mainly used for detector tests in the laboratory to have a fast and simple quick-
look to the generated data files. In case many intermediate results are produced, the FITS-header
creation for each individual frame may introduce large overheads in both transfer time and needed
disk space. To overcome this, the frames may be stored into data-cubes (DET.FRAM.FORMAT =
“cube”). One cube would be created per frame type. This is especially needed for storing data in
burst mode, where usually only very small windows are read out. To store several thousands of
those small windows in binary image extensions or even single files would imply an enormous
overhead.

The standard file format would be to store the frames produced during one exposure into binary
image extensions (DET.FRAM.FORMAT = “extension”). If the data are coming from different pro-
cesses, they will normally be available all at the same time. When storing to different files (i.e. one
FITS-file per acquisition process containing all frames delivered by this process), all transfer can be
done in parallel and the transfer processes need not to wait for each other before saving data to disk
(DET.FRAM.MULTFILE = “T”). In the right configuration this would improve the transfer perfor-
mance considerably. Nevertheless, when transfer performance is not the limiting factor, the storage
mechanism is configurable to have only one binary image extension file per exposure
(DET.FRAM.MULTFILE = “F”). A default value for this can be defined in the controller electronics

26 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
system configuration file. It must also be considered, that when storing data from different acquisi-
tion processes into the same file, then the order of the individual image extensions is undefined! In
any case each image extension contains a unique identifier in the extension header.

In case of very long integrations it might be required to inspect some intermediate data and to check
them for consistency while the exposure is still running in order to avoid loosing telescope time,
when something went wrong. In such cases the “extension” format is not practical as the data on
disk can first be accessed when the exposure has finished. The “single” file format may be chosen to
allow such intermediate quick-looks. This may require some FILE-merging to be done by higher lev-
el SW (OS) before passing the data to the archive.

The information which system parameters (if used in the actual context - see section 3.7) will appear
in the FITS header is defined in the dictionaries [AD37].

4.6 Data File Naming

Three different naming schemes are available for the files being produced during an exposure. Un-
less an absolute path name is specified in the (base-)name all files will be stored by default in the
data-path $INS_ROOT/$INS_USER/DETDATA. The user’s access rights for the data-path are
checked before the exposure is started.

The naming scheme is set by the DET.FRAM.NAMING keyword. The keyword can be set either via
SETUP command or in the system configuration file. The value is one of “request” or “sequence” or
“auto”:

1. Request Naming: The name must be specified before each exposure is started. The name
is given in with the SETUP command (parameter “DET.FRAM.FILENAME <name>”).
The file will be named in the following way:

<name>[_<frame-name>][_<frame-number>].fits

2. Sequence Naming: An index is added to a base name. The index is incremented after each
exposure. Setting the base name is done with the SETUP command (parameter
“DET.FRAM.FILENAME <name>”). The index can be set with the “DET.FRAM.SEQIDX
<no>” parameter. The FITS-file will be named in the following way:

<name><seq-index>[_<frame-name>][_<frame-number>].fits

3. Auto Naming: An index is added to a base name. When a new base name is set (or the
naming scheme changes) a start index is determined automatically by searching the data
target directory for files starting with the base-name. Initially (i.e. when DET.FRAM.SE-
QIDX is set to zero) the returned index is the highest existing index plus one. If
DET.FRAM.SEQIDX is larger than zero the returned index is the first not existing index
which is larger than DET.FRAM.SEQIDX. Once the index is determined it is increment-
ed by one (without further check) after each exposure until either the base-name or the
naming scheme changes or a new (minimum-)sequence number is explicitly set via a set-
up command. This makes it necessary that if DET.FRAM.SEQIDX is set to a value larger
than zero, then no file with the current base-name and an index larger than
DET.FRAM.SEQIDX must exist in the data target directory.

The frame name and frame number are only added to the filename in case individual files are gener-
ated for each frame (“single” file format).

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 27
4.7 Detector Mosaics

Detector mosaics can be handled in various ways. When being all of the same type and when fitting
into the computing resources of a single NGC workstation, just the chip dimension (DET.CHIP.NX/
NY) in the detector configuration file may be enlarged and the chips can be mapped into a single
image (virtual chip) with an appropriate sorting map. It is possible to split them up again into im-
age extensions when storing the data to disk and use the full image only for the real-time display.
The DET.CHIP.SPLITX/Y keywords define how many chips are mapped in the full image in x- and
y-direction.

Otherwise the DET.CHIPS keyword can be set to <N> to give the number of chips (or also virtual
chips in the above sense). This will automatically set the -ndet option of the acquisition process to a
value of N/<number of launched acquisition processes>. Each acquisition process will thereby be in-
structed to produce a [NX x (NY x ndet)] data frame containing the ndet images in consecutive or-
der. The associated acquisition module in the control server would split the frame again into ndet
separate images and would store them either to individual files or to binary image extensions of a
single file. The chip parameters (position in the mosaic, “chip alive”, etc.) as given in the detector
configuration file (see section 3.5.2) are stored in the FITS-(extension) headers. If multiple files are
generated, a DET<n> extension will be added to the filename:

<name>_DET<n>[_<frame-name>][_<frame-number>].fits

The index <n> gives the index of the first detector stored in this file.

4.8 Post-Processing

Usually post-processing is not in the scope of the detector control software and should be done by
higher level SW (data pipeline), especially when FITS information from other sub-systems (TCS,
ICS) is needed for proper evaluation. Nevertheless it might be at least convenient to apply some op-
erations before storing the data to disk. Such operations might be image rotation or the evaluation
of some data in order to put the result into the FITS-header. As this has a fully application specific
nature, it is intended to be done in a post-processing callback, which is executed every time before a
frame is stored to disk. If the call-back procedure generates the data file by itself it has to inform the
server, that no more operation should be done with this frame. This information can be passed in
the return value (ngcbSKIP) of the call-back procedure. Some applications also require that this
post-processing is done within an infinite loop (i.e. outside the data taking phase during an expo-
sure). A typical example for this are slow control loops with low real-time requirements like secon-
dary autoguiding. The sustained transfer (plus post-processing) is enabled/disabled via a transfer-
enable flag (DET.ACQi.TRANSFER T/F).

4.9 Exposure Control

Exposures are started using the START command. The server will perform a snapshot of all rele-
vant parameters to be added to the FITS header(s) of the produced data file(s). Normally, when an
exposure is started both sequencer and acquisition are restarted. It is also possible to let the se-
quencer run continuously, when a START-command is issued. This is controlled via the SETUP
keyword “DET.SEQi.CONT T|F”. A default value for this can be given in the detector configura-
tion file. In continuous mode just the acquisition process resets its buffers and counters and starts
building a new sum. The counter reset is required to avoid that corrupted data is used for comput-
ing the result frames, like if for instance the telescope was moved and frames where taken during
the movement. As the exposure start command is sent asynchronously in this case, the current inte-
gration needs to be skipped. In the worst case this introduces an overhead equal to the detector in-
tegration time. To avoid this overhead the acquisition module can also be set to a “continuous mode”

28 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
with the SETUP keyword “DET.ACQi.CONT T|F”. In continuous mode the counter-reset is dis-
abled and it is up to the initiator of the exposure start command to ensure, that there was no change
in the field of view since the last integration start. A timed exposure start can be done using the com-
mand

START -at <hh.mm.ss[.uuuu]>

which defines an absolute start time (UTC). Until the actual start time is reached, the exposure status
is set to “pending”, which will limit the set of accepted commands during that time.

It is possible to synchronize exposures on multiple NGCIRSW instances via the external trigger in-
put of the sequencer hardware module (see [AD9]).

If several sequencers are installed in the same system (i.e. the same instance of NGCIRSW), then the
exposures can be synchronized by using the global run-signal, which is raised by one sequencer in-
stance and is propagated to all other sequencer instances having the external run-control enabled
(DET.SEQi.RUNCTRL = T in the detector configuration file). If one of the sequencers is not operat-
ing in continuous mode (i.e. it is stopped and restarted as exposure start), then the DET.SEQi.CONT
keyword is ignored for all other synchronous sequencers.

When the exposure has started, the exposure status will be “integrating”. When the header of the
last file has been received by the data transfer task (i.e. the break-conditions for all frames have been
reached) the exposure status goes to “transferring”. At this time all detector-data for the current ex-
posure are taken and it would be possible to change the field of view (e.g. move the telescope).
When the last file has been stored on disk, the exposure state goes to “success”. If an error occurred
during the exposure, the status goes to “failure”. If the exposure was aborted, the status goes to
“aborted”. The exposure status is stored in the database attribute ‘<alias>ngcircon:exposure.expSta-
tus’. It can take the following values:

1 - INACTIVE
2 - PENDING
4 - INTERGRATING
64 - TRANSFERRING
128 - SUCCESS (completed_
256 - FAILURE (completed)
512 - ABORTED (completed)

An explicit status value (in ASCII string format) is stored in the database attribute ‘<alias>ngcir-
con:exposure.expStatusName’.

Whenever a new data file is created, the full path name is written to the database attribute
‘<alias>ngcircon:exposure.newDataFileName’.

The exposure can be aborted using the ABORT-command. In this case no data file is generated un-
less a frame was already received on the WS at the time when the command was issued.

The END-command makes the acquisition process terminate the exposure as soon as possible. In
this case the generated data file may contain just an intermediate result.

The WAIT-command can be used to wait for an exposure to complete. A reply message with the
current exposure state is sent immediately. When the exposure status is (or becomes) “completed”
(i.e. “success”, “failure” or “aborted”), the server sends the last reply, which again contains the actu-
al exposure state.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 29
4.10 Timing Accuracy

The control server will provide timestamps for exposure start and for all received frames with an
accuracy of - at least - 0.1 seconds. The accuracy depends mainly on the operating system gitters. If
a high accuracy is needed the detector readout can be triggered via the VLT TIM.

4.11 Chopping Mode

Synchronization of detector read-out with a chopper is done via the external trigger input of the se-
quencer (see [AD9]). If no chopper signal is available for this purpose, then the synchronization is
done via the VLT TIM, which has to start a pulse generation at same start time and with same fre-
quency as the chopper (see Figure 4). The chopping frequency has to be rounded to two digits in
this case. The NGC hardware will take care, that the sequence always starts in the same phase (e.g.
always “on object”). A maximum value for the chopping frequency is computed within the sequenc-
er program and is stored in the setup parameter DET.CHOP.FREQ (Hz). This can either be re-
trieved via the STATUS-command or also via the database entry ‘<alias>ngcircon:chopper.freq’.
Chopping mode is enabled/disabled by the setup parameter DET.CHOP.ST (T/F). The chopper
transition time is passed to the sequencer program via the setup parameter DET.CHOP.TRANSTIM
(seconds). The DET.CHOP.ST parameter is also passed to the respective acquisition process, which
will then take care of computing the subtracted images.

The computation of the result image (object - sky) is application specific. Usually the parameters
DET.CHOP.NCYCLES and DET.CHOP.CYCSKIP define the number of chopping cycles and the
number of cycles to skip after start, and DET.IR.NDIT + DET.IR.NDITSKIP integrations will be
done on each chopping half cycle. The DET.IR.NDITSKIP integrations are skipped at the beginning
of each half cycle. Optionally the data for the chopping half cycles can also be computed (controlled
via the FRAME-command - see section 4.2). However - these parameters are application specific
and may not be valid in all cases. If applicable they will be available either via the STATUS-com-
mand or via the parameter table in the database attribute ‘<alias>ngcircon:system.param’.

Figure 4 Chopping Mode

Chopper

VLT-TIM

NGCIRSW NGC-Sequencer

Start-Time, Frequency

OS

Max. Frequency

Transition-Time

Start-Time, Frequency

Trigger

DET.IR.NDIT,
Chopping Parameters:

Detector Integration Time

DET.IR.NDITSKIP,
DET.CHOP.NCYCLES,
DET.CHOP.CYCSKIP, ...

30 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 31
5 GRAPHICAL USER INTERFACE

The graphical user interface (GUI) is created with the VLTSW panel editor [RD39]. Commands are
sent from the GUI to the control server via the CCS message system. All status data is read back via
the database. The panel reacts automatically on database events (i.e. when an attribute in the data-
base changes). Several panels can run in parallel to control different instances of the control server.
An instance number can be passed to the GUI via the “-inst” command line option. The database
branch and the server name, with which the control server is registered in the environment, is de-
rived from this number. A startup script can be used to start both the GUI and the server with the
proper instance number.

A new system configuration and a new detector configuration can be loaded via the panel menu
bar. There one can also switch between normal mode and simulation mode and issue all commands for
server state switching (see 3.2). It is possible to restart the control server from the GUI. The read-out
modes, as defined in the detector configuration, can be selected via a global option button.

5.1 User Interface Classes

The hardware modules (sequencer, CLDC, ADC) and the acquisition modules are represented as
instances of UIF classes. There is one UIF class instance per hardware module. The instances can be
selected with option buttons outside the class widget. Some commands refer to “all” instances
(“start all sequencers”, “enable all CLDC modules”) and require a button outside the class widgets.

The panel contains a UIF class for the overall exposure setup, where one can select the naming
scheme and the file format, set the exposure filename and issue all exposure control commands by
pressing buttons (START, ABORT, END). The produced frames are displayed in a file history wid-
get. It is possible to show also the FITS header of the produced FITS-files by double clicking on the
file names.

Figure 5 Exposure UIF Class

The CLDC UIF class provides a voltage tune bar to tune a selected clock- or bias-voltage within the
defined range. The ranges are read from the database. The actual voltages can be saved to a voltage
configuration file. New voltage configuration files can be loaded by typing the file name into an en-
try-widget or via a file browser. Voltage telemetry is shown in a global result widget when pressing
the telemetry button.

32 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
Figure 6 CLDC UIF Class

The sequencer UIF class provides all means to setup and control one sequencer instance. Clock pat-
tern configuration files and sequencer programs can be loaded by typing the file name into entry-
widgets or via a file browser. The class also contains the entry widget for the detector integration
time, which can be set individually for each sequencer in the system.

Figure 7 Sequencer UIF Class

The ADC UIF class provides all means to setup and control one instance of an ADC module:

Figure 8 ADC UIF Class

Via the acquisition UIF class a new acquisition process can be launched (usually this will happen au-
tomatically when selecting the read-out mode):

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 33
Figure 9 Acquisition Process UIF Class

The window for the acquisition process is usually taken over from the sequencer module class
(read-out window). But it is also possible to set it manually (mainly used for test purposes).

The performance monitor in the acquisition UIF Class shows the pre-processing CPU load on the
NGC-LCU, where the current process is launched.

All of the hardware- and acquisition-module classes show the actual status (“sequencer running”,
“CLDC enabled”, “acquisition process running”, “ADC enabled”).

5.2 Notebook Area

There is a notebook area where one can select additional UIF classes. By default there is one for the
parameter setup, one for the frame setup and one for the action history. It is possible to add applica-
tion specific control widgets in that area (chopper interface, etc.).

The parameter setup widget shows the list of application specific parameters as described in section
3.5.4. There is a “Default” button, which will set all parameters to the values given in the parameter
default setup files. The default setup files are applied in the order: system configuration default set-
up, detector configuration default setup, read-out mode default setup, where the last loaded setup
has precedence.

Figure 10 Parameter Notebook

34 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
In the frame notebook one can select the frames to be generated and the ones to be stored during the
next exposure. The exposure break condition and a software window can be set for each defined
frame type. The frame setup can be done either individually per acquisition module or globally for
all acquisition modules.

Figure 11 Frame Setup Notebook

The history notebook logs all major actions (server restart etc.) which are done via the panel.

Figure 12 Action History Notebook

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 35
Figure 13 Engineering GUI

36 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
5.3 Server Preferences and System Configuration

Figure 14 GUI Preferences

Figure 15 Server Preferences

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 37
Figure 16 System Configuration Tool

38 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 39
6 TRACEABILITY MATRIX

6.1 NGC Requirements from [AD6]

Item Requirement Section

3.7 Software

1 Generally, software shall not limit the performance of the hard-
ware.

2.1

2 It shall be command driven. 2.1, 2.2

3.7.1 High-level operating systems

3 The high-level operating systems must be |compliant with the
VLT requirements. However, their number and diversity shall be
kept to the minimum necessary for NGC.

2.1

4 A careful attempt shall be made to define an interface layer
between the NGC control software proper and the operating sys-
tem(s) and so to enable porting of all software above this layer at
reasonable cost.

[AD9]

3.7.2 Configuration Control

5 At all times, all software and all parameter files shall be kept
under configuration control.

2.3, 3.5.4

6 For critical parameter files, an additional mechanism to ensure
their integrity (e.g., check sums) should be considered

TBD

3.7.3 Programming

7 The usage of modern code-generating tools with a view towards
testing, documenting, and debugging is encouraged. Their selec-
tion should be coordinated with the Technical Division. Island
solutions should be avoided.

TBD

40 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
8 For each module, code and documentation shall be designed such
that it can be maintained without analyzing other modules.

-

3.7.4 Installation and start-up procedures

9 Fully automatic installation procedures and versatile configura-
tion tools shall be provided.

2.3, 3.5.1, 3.5.2

10 Execution of the standard control software in the telescope envi-
ronment shall not require any special user privileges to be granted
by the operating system.

2.2

11 The start-up script shall not require more than 10 s for auto-recog-
nition of the hardware and the ready-for-use initialization of hard-
and software.

No further overhead
here.

3.7.5 Resource checking

12 Software shall be able, prior to each exposure, to check the availa-
bility of all critical resources.

4.6

3.7.6 Elementary functions

13 The set of elementary functions shall comprise those of IRACE
and FIERA.

7.2.2

14 The addition of further functions shall be possible without affect-
ing the others.

3.8, [AD9]

3.7.7 Tests

15 Test software shall be developed in parallel to the control software
itself.

2.4, [AD9]

16 The emulation of failures of other utilities (software, hardware,
network, lack of resources, access denial) should be considered.

3.4, 3.6, [AD9]

Item Requirement Section

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 41
17 Standardized tests of the software corresponding to any supported
hardware configuration shall be possible by merely selecting a
single set of parameters.

3

18 A sequence of tests of several hardware configurations shall be
possible without operator intervention.

3

19 Means should be considered to let NGC keep track of the fre-
quency of usage of its key functionalities as a way to set usage-
oriented test priorities.

TBD

3.7.8 Times and timings

20 Without the VLT TIM, all absolute times shall be correct to within
less than 0.1s.

4.9

21 Relative synchronizations and time intervals shall be accurate to
better than 0.1% or, for intervals less than 10s, to better than
0.01s.

-

22 Stricter timing requirements shall be realized using TIM. 4.9

3.7.9 Special modes

23 Support of the following techniques (in the order of decreasing
priority) should be foreseen:

• nod and shuffle

• subpixel sampling and digital filtering so that during
an exposure the built-up of the S/N can be followed
by performing a regression analysis for each pixel

• drift scanning

• non-destructive readout

• on-chip charge shifts by a user-definable amount (e.g.,
for through-focus sequences)

[AD9]

24 Device type-specific modes offered by state-of-the-art IR detec-
tors shall be included.

[AD9]

Item Requirement Section

42 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
25 If centroiding functions need to be supported, this shall be possi-
ble at a frame rate of 1 Hz for data arrays of up to 256 x 256 pixels
using a single Gaussian fit or similar. For much smaller data
arrays, rates of up to 100 Hz should be possible.

[AD9]

3.7.10 Consecutive exposures

26 If, e.g. due to on-line data processing, the time between end of
detector readout and availability of the FITS file on disk becomes
a significant overhead, it shall be possible to configure the soft-
ware such that the next exposure begins right after the previous
readout.

4.9

3.7.11 Windowing and on-chip binning

27 Standard windowing and on-chip binning shall be provided 4.2, 4.3

28 The number of windows should only be limited by the capabilities
of the detectors.

4.2, 4.3

3.7.12 Pixel processor

29 A pixel processor shall be embedded in the system. Its interfaces
to the remainder of the system shall be designed such that a
replacement of the hardware plus operating system and/or of the
processing software can be fully transparent to all other subsys-
tems.

2.1, 2.2, [AD9]

30 The following operations shall be supported from the beginning:
averaging of frames with and without removal of outliers (e.g.,
particle events)

• bias subtraction

• centroiding of point sources

• TBC

(If performance reasons so require, the implementation may be
detector dependent.)

[AD9]

31 Close integration with NGC of a general-purpose image process-
ing system featuring a user friendly scripting language could be
considered.

[AD9]

Item Requirement Section

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 43
32 More desirable is an interface to the ESO DFS and the inclusion
of general-purpose algorithms and recipes in the DFS CPL for re-
use by data reduction pipelines.

2.1

3.7.13 ALMA control software

33 If this is in the general interest of ESO and supported by the Tech-
nology Division, elements of the ALMA control software may be
used.

TBD

3.7.14 Special utilities

34 For multi-port systems, bias equalization to within better than 1%
shall be possible on demand but without any further operator
supervision.

Not for IR.

3.8 External interfaces

35 Ideally, external interfaces (e.g., commands, databases) presently
maintained by IRACE and FIERA would be supported by NGC
with a minimum of changes so as to make the integration of NGC
with the ESO operations scheme as seamless as possible. How-
ever, since in this regard the commonalities of FIERA and IRACE
are very limited, this also limits backward compatibility.
In no case shall NGC feature two different types of interfaces for
the same purpose.

TBD

3.8.1 Data format

36 The data format shall be compliant with the Data Interface Con-
trol Document.

4.5

37 Comprehensive detector and electronics telemetry shall be
included in the data headers.

4.5, 4.9

38 From the FITS headers, it shall be possible to uniquely infer the
complete set of hard- and software configuration and all parame-
ter values.

4.9

Item Requirement Section

44 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
39 A generalized, moderately configurable interface to real-time
computers, e.g. for adaptive optics or fringe tracking applications,
shall be defined (in cooperation with ESO software engineers
working downstream from such an interface).

Not within this scope.

40 It could be advantageous that (a possibly special incarnation of)
the pixel processor can serve as the real-time computer (or vice
versa).

TBD

41 Latency shall not exceed 100 us. Not within this scope.

3.8.3 Real-time display

42 An interface to the RTD shall be provided. 2.1

43 For high frame rates, it shall be possible to request only every nth
frame to be displayed.

[AD9]

44 Adaptive auto-selection shall be supported. [AD9]

3.8.4 VLT telescope control system

45 It shall be possible to synchronize detector operations with the
following functions:

• Telescope nodding

• M2 chopping

• Non-sidereal tracking

[AD9]

3.8.5 VLT time distribution system

46 The possibility of an interface to the VLT Time Interface Module
shall be foreseen.

[AD9]

47 -
52

Reserved.

3.11 Diagnostic tools

Item Requirement Section

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 45
3.11.1 Hardware self-test

53 The hardware shall be able to execute a comprehensive self-test. It
shall be possible to start it by pressing a physical button as well as
by software. Due consideration shall be given to the protection of
the detectors. The execution shall not exceed 5 minutes. An auto-
matic log shall be produced.

TBD

54 In order to save space on the electronics boards, it is acceptable to
let remote software (e.g., on the xLCU) execute these tests with
hardware only reporting its status. This software shall be devel-
oped in parallel to the one of the hardware.

TBD

3.11.2 Read-back of parameter values

55 It shall be possible to read back the actual values of all parameters
set by software.

3.5.4

3.11.3 Automatic identification of hardware components

56 All LRUs (line Replaceable Unit) shall have a unique identifica-
tion that is readable by software.

3.2, [AD9]

57 An extension also to detectors shall be considered. TBD

58 Software shall be able to use this information for auto-configura-
tion.

3.2, 3.5.1, [AD9]

3.11.4 Error handling

59 Meaningful error messages and log files are essential; they shall
enable software staff not familiar with the software or its scope to
identify and fix minor problems. Different severity levels shall be
distinguished. The status and options for the next actions shall be
clear at all times.

3.3, 3.4

60 It shall be possible to set the severity level up to which automatic
recoveries from errors shall be attempted.

TBD

Item Requirement Section

46 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
61 After a failed data saving, the OS shall have the possibility to
recover the last frame.

Not applicable for IR
exposures.

62 After an interruption in the power supply, software should be able
to automatically restore the status at the beginning of the last suc-
cessful exposure.

Not possible.

3.12 Support of engineering work

3.12.1 Engineering mode

63 There shall be a password-protectable engineering mode. It may
contain extra modules and options while otherwise may be omit-
ted for reasons of convenience. However, modules used for nor-
mal operations shall be identical.

3.9, [AD9]

64 This mode shall offer access to all essential elementary detector
control functions and allow hardware engineers rapid proto-typ-
ing of experimental software.

3.9, [AD9]

3.12.2 Change of parameters

65 A change of software-configurable parameters shall not require a
re-start of the system and, where possible, be supported also dur-
ing readout. This would also benefit multi-mode instruments
where, e.g., imaging and spectroscopy require different parameter
sets for optimal performance. Switching between modes shall not
lead to any hysteresis.

3.5.4, 4.1, [AD9]

66 A mechanism shall be implemented to reduce the risk of out-of-
range parameter values being set accidentally that could damage
the connected detector(s). One possibility might be to let the con-
troller hardware request a unique electronic ID (such as the serial
number) from the detector.

TBD

67 An interface to BOB shall be provided that permits parameter val-
ues to be set from dedicated observation blocks / observing tem-
plates. To take advantage of this, laboratory setups would need to
be able to emulate VLT-compatible instruments to the extent that
VLT control software Sequencer scripts can be executed.

2.1

Item Requirement Section

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 47
3.12.3 Detector library

68 A repository with parameter files for specific detector types and
their baseline operating modes shall be offered. For engineering
purposes, easy copying and editing of such files shall be sup-
ported. To the extent possible, different installations of compara-
ble detector systems shall share these data.

3.5.2

3.12.4 Disabling of components

69 It shall be possible to declare LRUs and channels defunct. In
response to this, the software should be able to automatically
adapt itself to the remaining hardware configuration.

3.5.1, 3.5.2, 4.7

3.12.5 Special modes

70 The following shall be foreseen:

• pocket pumping

• convenient connection of monitoring equipment such
as oscilloscopes, multimeters, and logic analysers

• determination of PTF of DC-coupled IR and CMOS
devices by a capacitive comparison technique

[AD9]

3.12.6 Programming interface

71 Thought shall be given to the provision of an efficient program-
mer’s interface, ideally with a standard scripting language such as
Tcl/Tk, that permits engineers rapid proto-typing of detector con-
trol and data processing software.

2.1, [AD9]

3.12.7 Test facility

72 A cost-effective test facility for all types of LRUs shall be sup-
plied. It may either be integrated into the controller or stand-
alone.

Not within this scope.

73 Its software shall use the one of the NGC only. Not within this scope.

74 An expandible collection of standard test functions shall be con-
sidered.

Not within this scope.

Item Requirement Section

48 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
6.2 NGC Software Requirements from [AD7]

75 Where applicable, test results should also be offered in graphical
form with an option for hardcopies.

Not within this scope.

3.12.8 Simulation modes

76 Standard VLT simulation modes shall be supported. Simulation
should be one of the standard modes of NGC rather than an add-
on.

3.6, [AD9]

77 To the greatest possible extent, simulation of key elements shall
be supported in both soft- and hardware.

3.6, [AD9]

78 Hardware simulators to generate programmable test pixel patterns
and video waveforms shall be devised.

Not used.

79 Software simulators shall be hierarchically structured and permit
the simulation of data streams with real numbers and realistic data
rates so that relative timings, etc. can be tested.

3.6, [AD9]

Item Requirement Section

3.1 Functional Requirements

3.1.1 Common Requirements

80 NGCIRSW shall handle at least TBD clocks, TBD biases, TBD
preamps and TBD video channels.

3.5.1, 3.5.2, [AD9]

81 NGCIRSW will implement, as a minimum, the commands
already used by FIERA and IRACE and described in their CDTs
with an interface which will allow backward compatibility.

7.2.2, [AD9]

82 The ONLINE status requires that all voltages are loaded and
switches closed as well as telemetry is acquired and checked.

3.2

Item Requirement Section

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 49
83 NGCIRSW will handle multiple independent detectors. 3.5.1, 3.5.2, 4.7

84 It shall be possible to read number of windows limited only by
detector properties

4.3

85 Windows shall be read either in hardware through sequences or in
software. The latter case implies that a full frame is read out and
then a window of data is computed in memory.

4.2, 4.3

86 Telemetry shall be available at all times, with the possibility to
have a separate period for logging on the VLT logMonitor.

3.2

87 NGCIRSW shall transfer all computed results to display (RTD)
and/or to FITS-file.

2.1, 4.2, 4.9, [AD9]

88 Display visualization is done in parallel to all other data transfers
(i.e. one may look at the DIT frame while storing the INT frame
to disk and while the next data is already being processed).

 [AD9]

89 If processing- or data-transfer-bandwidth exceeds the capacity of
one single computer, the task is split up to N computing units.

2.1, 4.5, [AD9]

90 In order to test the image data path, NGC must be able to produce
pre-defined data,

[AD9]

3.1.3 Infrared Specific Requirements

91 Each Pixel can be read out N times and an average is computed. [AD9]

92 Subsampling and digital filtering of individual pixels shall be pos-
sible.

[AD9]

93 The ONLINE status requires that the system also starts readout. [AD9]

94 In case reference values on special channels are read out (e.g.
Hawaii2RG), NGC shall be able to interpolate through rows or
columns.

7.2

95 Chopping mode shall be implemented [AD9]

Item Requirement Section

50 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
96 NGCSW shall be able to transfer bursts of raw data to FITS files. 4.4

97 Standard read-out modes:

• Uncorrelated

• Double correlated (reset-read-read)

• Double correlated (read-reset-read)

• Least square fit

• Fowler Sampling

[AD9]

3.2 External Interface Requirements

3.21 User Interfaces

98 NGCIRSW user interfaces will be developed following rules
described in [RD39].

5

99 The user interface for telescope operations will merge functionali-
ties of current FIERA and IRACE user interfaces.

TBD

100 Specific graphical interface may be developed in order to ease
engineer’s work in the laboratory. These interfaces may be devel-
oped not following the standards if their use is confined to labora-
tory.

5

3.2.3 Software Interfaces

101 Sequencer programming shall be implemented using a scripting
language.

[AD9]

102 The scripting language will allow evaluation of arithmetic formu-
las at run-time.

[AD9]

103 The startup overhead of the script must be as short as possible. [AD9]

104 Where no script is required a simple parsing can be done. [AD9]

105 A graphical tool shall be implemented in order to have also the
possibility to program and visualize the sequences.

Not within this scope.

Item Requirement Section

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 51
106 The format on disk of the sequences shall be ASCII. [AD9]

107 Other formats, non ASCII, for ancillary data (e.g. for graphics)
could be used, but must not be required for running the system.

[AD9]

108 The sequence programming will allow free use of setup parame-
ters.

[AD9]

109 The chopper frequency may be input parameter or output parame-
ter of the sequencer program.

[AD9]

110 Free placement of synchronization points with external trigger. [AD9]

111 Read-out of multiple windows shall be configurable in program-
ming.

[AD9]

112 Sub-pixel sampling (N samples per pixel) shall also be possible [AD9]

113 The sequencer programming tool will also allow to emulate the
real sequencer.

3.6, [AD9]

114 Interface to standard RTD shall be provided. 2.1, [AD9]

115 The interface and the library to be used are given in [RD40]. [AD9]

116 If needed flat-field frame and bad pixels mask shall be uploaded to
NGCIRSW which will then distribute them to the relevant subsys-
tem.

[AD9]

3.2.4 Communications Interfaces

117 Communication between internal subsystems of NGCIRSW shall
be implemented using VLTSW standard messaging tools as well
as CCS database.

2.1, [AD9]

118 Whenever not otherwise specified, the same standards will be
used for all other communication interfaces.

[AD9]

Item Requirement Section

52 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
6.3 Adaptive Optics Requirements for NGC from [AD20]

3.3.2 Data Transfer

119 Data transfer rate to the IWS shall be limited only by readout
speed.

[AD9]

120 An overhead of max. 5 seconds will be considered acceptable. [AD9]

Item Requirement Section

AONGCREQ-004 Number of detectors controlled from single NGC: 1-4 3.5.1, 3.5.2,
[AD9]

AONGCREQ-005 It should be possible to control multiple detectors with a sin-
gle NGC.

3.5.1, 3.5.2, 4.7,
[AD9]

AONGCREQ-006 The detectors controlled by a single NGC all be read with the
same read-mode and frame rate. Operations such as start and
stop, should operate on all detectors simultaneously.

4.1, [AD9]

AONGCREQ-007 It should be possible to synchronize the start of a read
sequence between NGCs

4.9, [AD9]

AONGCREQ-008 The synchronization should allow the start of the readout in
separate NGCs to be started within the frame jitter time.

[AD9]

AONGCREQ-009 Ability to visualise 1 of N frames asynchronously on instru-
ment WS using standard RTD, the value of N will be chosen
to allow visualisation on the WS of 1-4Hz, the maximum
frame rate required to the WS will be 50Hz.

[AD9]

AONGCREQ-010 Ability store 1 of N frames asynchronously in FITS format
on instrument WS, the value of N will be defined to allow a
maximum frame rate of 50Hz.

[AD9]

Item Requirement Section

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 53
AONGCREQ-011 Ability to store a series of N guaranteed consecutive frames,
where N should be sufficient to store a minimum of 2 seconds
of data with a goal of 10s.

[AD9]

AONGCREQ-012 At least one ROI (windowing/regions of interest) per detector
should be supported, as a goal multiple ROIs.

4.3, [AD9]

AONGCREQ-013 It should be possible to update the ROI definition (at a mini-
mum start coordinates) dynamically when a loop of readouts
is in operation.

Not possible in
the IR.

AONGCREQ-014 Ability to synchronize the start of a readout sequence with an
external trigger to within 30 micro seconds.

4.9, [AD9]

AONGCREQ-015 1x1 to 16x16 defined in steps of 1 pixel binning is the same
for each window within a given detector.

4.3, [AD9]

AONGCREQ-024 It should be possible to command the NGC to execute a
defined read sequence for the defined mosaic

4.7, [AD9]

AONGCREQ-025 N times. [AD9]

AONGCREQ-026 with a user definable (in microseconds) delay (from 0 to
TBD) between executions

[AD9]

AONGCREQ-027 where N is a value between 1 and Inf. [AD9]

AONGCREQ-028 A stop command for a given mosaic should stop the current
loop of readout sequences at the completion of the next cycle

3.5.1, [AD9]

AONGCREQ-
028a

It should be possible to instruct the NGC to pass a 15bit data
ramp over the real time data link in a standard frame includ-
ing both start and end of frame words at frame rates up to the
maximum supported

TBD - must be
supported by

hardware

AONGCREQ-029 As a goal it should be possible to load simulated images into
the NGC memory and have them ‘played back’ over the RT
data link as though coming from a normal readout sequence.

TBD - must be
supported by

hardware

Item Requirement Section

54 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
AONGCREQ-030 The replay speed should be a user parameter up to the maxi-
mum possible frame rate.

TBD - must be
supported by

hardware

AONGCREQ-038 Define one (or more) ROIs for a specified detector with start
pixel and window dimensions.

4.3, [AD9]

AONGCREQ-039 Define readout mode for detector mosaic. 4.1, 4.7, [AD9]

AONGCREQ-040 Enable/Disable storage of detector frames. 4.2

AONGCREQ-041 Define sub-sampling of readout to be passed to instrument
workstation for visualisation or storage.

4.1, [AD9]

AONGCREQ-042 Start readout of mosaic of detectors for N cycles, 1<=N<=Inf 3.5.1, 3.5.2,
[AD9]

AONGCREQ-043 with optional synchronization with external synch signal. [AD9]

AONGCREQ-044 Stop readout of a mosaic of detectors. 3.5.1, [AD9]

AONGCREQ-045 Acquire and store a contiguous set of N frames from a
‘group’ of detectors.

4, [AD9]

AONGCREQ-046 Upload a set of detector frames to be replayed in simulation
mode.

TBD - must be
supported by

hardware

AONGCREQ-047 Replay previously uploaded simulated data frames at defined
loop frequency.

TBD - must be
supported by

hardware

Item Requirement Section

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 55
7 APPENDIX

7.1 Database Classes

7.1.1 Sequencer Class

CLASS BASE_CLASS ngcdcsSEQ
BEGIN
 // Optional name
 ATTRIBUTE BYTES64 name ““

 // Clock pattern file name
 ATTRIBUTE BYTES256 clkFile ““

 // Program file name
 ATTRIBUTE BYTES256 prgFile ““

 // Status
 ATTRIBUTE BYTES32 statusName “idle”
 ATTRIBUTE INT32 status 0

 // Dwelltime (multiplier and add)
 ATTRIBUTE INT32 timeFactor 1
 ATTRIBUTE INT32 timeAdd 0

 // Sequencer continuous mode flag
 ATTRIBUTE INT32 continuous 0

 // Sequencer trigger mode flag
 ATTRIBUTE INT32 triggerMode 0

 // Sequencer run-control flag
 ATTRIBUTE INT32 runCtrl 1

 // Read-out window
 ATTRIBUTE INT32 startX 1
 ATTRIBUTE INT32 startY 1
 ATTRIBUTE INT32 nx 0
 ATTRIBUTE INT32 ny 0
END

56 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
7.1.2 CLDC Class

CLASS BASE_CLASS ngcdcsCLDC
BEGIN
 // Optional name
 ATTRIBUTE BYTES64 name ““

 // Configuration file name
 ATTRIBUTE BYTES256 cfgFile ““

 // Status
 ATTRIBUTE BYTES32 statusName “disabled”
 ATTRIBUTE INT32 status 0

 // Clock monitor 1
 ATTRIBUTE INT32 clkMon1 1

 // Clock monitor 2
 ATTRIBUTE INT32 clkMon2 1

 // clock-voltage settings of current CLDC-board (Volt)
 ATTRIBUTE Table clk(16,
 BYTES64 nameLow,
 BYTES64 nameHigh,
 DOUBLE voltageLow,
 DOUBLE voltageHigh,
 DOUBLE range1Low,
 DOUBLE range1High,
 DOUBLE range2Low,
 DOUBLE range2High,
 INT32 connected,
 INT32 reserved)

 // DC-voltage settings of current CLDC-board (Volt)
 ATTRIBUTE Table dc(20,
 BYTES64 name,
 DOUBLE voltage,
 DOUBLE range1,
 DOUBLE range2,
 INT32 connected,
 INT32 reserved)
END

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 57
7.1.3 ADC Class

CLASS BASE_CLASS ngcdcsADC
BEGIN
 // Optional name
 ATTRIBUTE BYTES64 name ““

 // Total number of ADC units on this module
 ATTRIBUTE INT32 num 4

 // Number of bits per pixel
 ATTRIBUTE INT32 bitPix 16

 // Number of enabled ADC units on this module
 ATTRIBUTE INT32 enable 0

 // Conversion strobe delay in ticks
 ATTRIBUTE INT32 delay 0

 // Packet size
 ATTRIBUTE INT32 packetSize 4

 // Packet routing length (number of packets from down-link)
 ATTRIBUTE INT32 packetCnt 0

 // Conversion strobe 1 (enable/disable)
 ATTRIBUTE INT32 convert1

 // Conversion strobe 2 (enable/disable)
 ATTRIBUTE INT32 convert2

 // Operational mode
 ATTRIBUTE INT32 opMode 0

 // Simulation mode
 ATTRIBUTE INT32 simMode 0

 // Monitor channel 1
 ATTRIBUTE INT32 monitor1 1

 // Monitor channel 2
 ATTRIBUTE INT32 monitor2 1

 // Offset per group
 ATTRIBUTE Vector offset (32, DOUBLE)
END

7.1.4 Controller Base Class

CLASS BASE_CLASS ngcdcsCTRL
BEGIN
 LOOP 4 ATTRIBUTE ngcdcsSEQ seq_#
 LOOP 8 ATTRIBUTE ngcdcsCLDC cldc_#
 LOOP 16 ATTRIBUTE ngcdcsADC adc_#
END

58 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
7.1.5 Acquisition Module Class

CLASS BASE_CLASS ngcdcsACQ
BEGIN
 // Optional name
 ATTRIBUTE BYTES64 name ““

 // Status
 ATTRIBUTE BYTES32 statusName “idle”
 ATTRIBUTE INT32 status 0

 // Process name
 ATTRIBUTE BYTES256 procName ““

 // Number of bursts
 ATTRIBUTE INT32 burst 0

 // Number of frames to skip before burst
 ATTRIBUTE INT32 burstSkip 0

 // Continuous mode flag (no counter reset)
 ATTRIBUTE INT32 continuous 0

 // Transfer flag
 ATTRIBUTE INT32 transfer 0

 // Table containing names and attributes of all available frames
 ATTRIBUTE Table frame(32,
 BYTES64 name,
 INT32 gen,
 INT32 store,
 INT32 breakCond,
 INT32 sx,
 INT32 sy,
 INT32 nx,
 INT32 ny)

 // Host name (NGC-LCU)
 ATTRIBUTE BYTES64 host ““

 // Command port
 ATTRIBUTE INT32 cmdPort 0

 // Data port
 ATTRIBUTE INT32 dataPort 0

 // Acquisition window
 ATTRIBUTE INT32 startX 1
 ATTRIBUTE INT32 startY 1
 ATTRIBUTE INT32 nx 0
 ATTRIBUTE INT32 ny 0
END

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 59
7.1.6 System Status Class

CLASS BASE_CLASS ngcdcsSYSTEM
BEGIN
 // Server name
 ATTRIBUTE BYTES64 serverName ““

 // Server process id
 ATTRIBUTE INT32 serverPid 0

 // Version string
 ATTRIBUTE BYTES256 version ““

 // DET category index
 ATTRIBUTE INT32 detIndex 1

 // System configuration file
 ATTRIBUTE BYTES256 sysCfgFile ““

 // Detector configuration file
 ATTRIBUTE BYTES256 detCfgFile ““

 // Current operation mode
 ATTRIBUTE BYTES32 opMode “NORMAL”

 // System status
 ATTRIBUTE BYTES32 stateName “OFF”
 ATTRIBUTE INT32 state 1
 ATTRIBUTE BYTES32 subStateName “idle”
 ATTRIBUTE INT32 subState 1

 // Alarm
 ATTRIBUTE BYTES256 alarm ““

 // Number of sequencer modules in system
 ATTRIBUTE INT32 numCldcMod 0

 // Number of CLDC modules in system
 ATTRIBUTE INT32 numSeqMod 0

 // Number of ADC modules in system
 ATTRIBUTE INT32 numAdcMod 0

 // Number of acquisition modules in system
 ATTRIBUTE INT32 numAcqMod 0

 // Number of FITS header blocks to reserve
 ATTRIBUTE INT32 fitsHdrSize 0

 // Status-polling flag
 ATTRIBUTE INT32 polling 0

 // Current action for action log
 ATTRIBUTE BYTES256 currentAction ““

 // Table containing the dynamic system parameters
 ATTRIBUTE Table param(128,
 BYTES32 name,
 BYTES32 value)
END

60 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
7.1.7 Exposure Class

CLASS inscEXPOSURE ngcdcsEXP
BEGIN
 // Exposure status
 ATTRIBUTE BYTES32 expStatusName “inactive”

 // Path to detector data
 ATTRIBUTE BYTES256 dataPath ““

 // New data file
 ATTRIBUTE BYTES256 newDataFileName ““

 // Exposure base name
 ATTRIBUTE BYTES256 baseName ““

 // Naming scheme used (default request-naming)
 ATTRIBUTE INT32 naming 1

 // Multiple files
 ATTRIBUTE INT32 oneFile 1

 // Data file format
 ATTRIBUTE INT32 format 1

 // Exposure time (seconds)
 ATTRIBUTE INT32 time 0

 // Exposure countdown (seconds)
 ATTRIBUTE INT32 countDown 0

 // Generate extended FITS header
 ATTRIBUTE INT32 extFits 0

END

7.1.8 Read-Out Mode Definition Class

CLASS BASE_CLASS ngcdcsMODE
BEGIN
 // Current read-out mode (name)
 ATTRIBUTE BYTES64 readModeName ““

 // Current read-out mode (id)
 ATTRIBUTE INT32 readModeId 0

 // Table containing name and id and a short description of
 // all defined read-out modes (terminated with empty string
 // and/or negative id)
 ATTRIBUTE Table readModeList(32,
 BYTES64 name,
 INT32 id,
 BYTES256 desc)
END

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 61
7.1.9 Guiding Class

CLASS BASE_CLASS ngcdcs2AG
BEGIN
 // Offset correction vector + quality
 ATTRIBUTE Vector offset (3, FLOAT)
END

7.1.10 Chopper Interface Class

CLASS BASE_CLASS ngcdcsCHOPPER
BEGIN
 // Chopper status (on or off)
 ATTRIBUTE INT32 status 0

 // Frequency
 ATTRIBUTE DOUBLE freq 0.0

 // Transition time
 ATTRIBUTE DOUBLE transTime 0.0
END

7.1.11 Server Class

CLASS ngcdcsCTRL ngcdcsSERVER
BEGIN
 LOOP 32 ATTRIBUTE ngcdcsACQ acq_#
 ATTRIBUTE ngcdcsSYSTEM system
 ATTRIBUTE ngcdcsEXP exposure
 ATTRIBUTE ngcdcsMODE mode
 ATTRIBUTE ngcdcs2AG guiding
END

CLASS ngcdcsSERVER ngcirconSERVER
BEGIN
 ATTRIBUTE ngcdcsCHOPPER chopper
END

62 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
7.2 Reference

7.2.1 ngcircon Server

NAME

ngcircon - NGCIRSW control server

SYNOPSIS

ngcircon [options]

DESCRIPTION

NGCIRSW control server. The server is based on the CCS event
toolkit EVH. Commands can be sent to the server via the
CCS message system.

OPTIONS

-db <point> - database point (without instance)
 (default: point = <alias>ngcircon)
-inst <label> - server instance label
 (default: label =)
-cfg <file-name> - load system configuration file
-dcf <file-name> - detector configuration file
-sim <LCU|HW> - start in simulation mode
-online - go online after start
-start - auto-start at online
-poll - enable status polling
-gui [name] - launch GUI (name is optional)
 (default: no GUI)
-ld <dictionary> - load dictionary (repetitive)
-det <index> - detector category index
 (default: index = 1)
-xterm - start processes in x-terminal
-verbose <level> - verbose level
 (default: level = 0)
-log <level> - log level
 (default: level = 0)
-shell - launch command shell
-help or -usage - show options

ENVIRONMENT

The environment variables INS_ROOT and INS_USER are used to build
the basic search paths ($INS_ROOT/$INS_USER/...) for configuration
files unless absolute paths are given. If the INS_USER environment
variable is not set, then the default value SYSTEM is assumed.

COMMANDS

The commands are defined in the command definition table of the
server (ngcircon.cdt).

SEE ALSO

ngcdcsEVH(4), ngcdcsCTRL_CLASS(4), evhTASK(4), EVH(5)

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 63
7.2.2 Command Definition Table

PUBLIC_COMMANDS

COMMAND= ABORT
FORMAT= A
PARAMETERS=

PAR_NAME= expoId
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Abort exposure.
@

COMMAND= BREAK
FORMAT= A
REPLY_FORMAT= A
HELP_TEXT=
Interrupt server.
@

COMMAND= CLDC
FORMAT= A
PARAMETERS=

PAR_NAME= module
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

PAR_NAME= default
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= enable
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= disable
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= zero
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= calibrate
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= clear
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= check
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= restore
PAR_TYPE= STRING

64 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
PAR_OPTIONAL=YES

PAR_NAME= save
PAR_TYPE= STRING
PAR_OPTIONAL=YES

REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
CLDC module interaction. The -module option specifies the
CLDC module the command refers to. Module numbers start with 1.
A zero module number refers to all modules. -default will
reset all voltages to their default values as defined in the
voltage configuration file. -enable/-disable will enable/disable
the output of the referenced module. -zero sets all voltages on
the module to zero. -calibrate performs a calibration which can
be cleared with -clear. -check checks all voltages on the module
against the telemetry. -restore restores the setup value of a
voltage keyword to the value as it was given in the configuration
file. -save saves the current voltage configuration to the given
file.
@

COMMAND= END
FORMAT= A
PARAMETERS=

PAR_NAME= expoId
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Terminate exposure as quickly as possible with an intermediate result.
@

COMMAND= EXIT
FORMAT= A
REPLY_FORMAT= A
HELP_TEXT=
Make the server exit/terminate.
@

COMMAND= FRAME
FORMAT= A
PARAMETERS=

PAR_NAME= module
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

// frame name
PAR_NAME= name
PAR_TYPE= STRING
PAR_OPTIONAL=NO

// generate
PAR_NAME= gen
PAR_TYPE= STRING

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 65
PAR_OPTIONAL=YES

// store
PAR_NAME= store
PAR_TYPE= STRING
PAR_OPTIONAL=YES

// break condition
PAR_NAME= break
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

// window to be transferred
PAR_NAME= win
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES
PAR_MAX_REPETITION=4

REPLY_FORMAT = A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT =
Data frame setup. The -module option specifies the acquisition
module the command refers to. Module numbers start with 1. A zero
module number refers to all modules. -name defines the name of
the frame type to which the command refers. -gen/-store define
whether the frame of the given type will be generated and/or
stored to disk. -break defines the number of frames of that type
to be produced until the exposure can terminate (break condition).
-win followed by START-X, START-Y, NX, NY specifies a software
window to be applied for that frame type.
@

COMMAND= KILL
FORMAT= A
REPLY_FORMAT= A
HELP_TEXT=
Send a KILL signal to the server.
@

COMMAND= MSGDLOG
FORMAT= A
REPLY_FORMAT= A
HELP_TEXT=
Disable autologging of messages sent or received by the application.
@

COMMAND= MSGELOG
FORMAT= A
REPLY_FORMAT= A
HELP_TEXT=
Enable autologging of messages sent or received by the application.
@

COMMAND= NGC
FORMAT= B
REPLY_FORMAT= A
HELP_TEXT=
Issue a NGC command. This is a low-level interface to all
NGC hardware functions.
@

66 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
COMMAND= OFF
FORMAT= A
REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Close all devices and make all sub-processes terminate.
@

COMMAND= ONLINE
FORMAT= A
REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Bring server to on-line state.
@

COMMAND= PING
FORMAT= A
REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Make a check of the functioning of the server and send back an
overall status message.
@

COMMAND= RESET
FORMAT= A
REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Reset controller front-end.
@

COMMAND= SELFTST
FORMAT= A
PARAMETERS=

PAR_NAME= function
PAR_TYPE= STRING
PAR_OPTIONAL=YES
PAR_MAX_REPETITION=999

PAR_NAME= repeat
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES
PAR_DEF_VAL= 1

REPLY_FORMAT = A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 67
PAR_DEF_VAL= “OK”
HELP_TEXT =
Execute a selftest (hardware and software) of the specified
function(s). -repeat specifies, how often the given test is
repeated in a loop. Valid functions are SEQ, CLDC, ADC and ACQ.
If no function is given, then an overall selftest of all
functions is performed.
@

COMMAND= SEQ
FORMAT= A
PARAMETERS=

PAR_NAME= module
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

PAR_NAME= save
PAR_TYPE= STRING
PAR_OPTIONAL=YES

PAR_NAME= tmo
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES
PAR_MAX_REPETITION=2

PAR_NAME= wait
PAR_TYPE= STRING
PAR_OPTIONAL=YES

PAR_NAME= stop
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= start
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= step
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= trigger
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Sequencer module interaction. The -module option specifies the
sequencer module the command refers to. A zero module number
refers to all modules. -start starts the sequencer and the
associated acquisition processes. -stop stops the sequencer
and the associated acquisition processes. -step starts sequencer
and acquisition and lets the sequencer run till next breakpoint.
-save saves the current clock pattern configuration to the given
file. -tmo specifies a timeout (in seconds) for the sequencer wait
instruction. The second parameter of this function gives a polling
interval in milliseconds (default is 100). -wait waits for the
specified sequencer program event (trigger|break|end) to occur.
Module numbers start with 1. -trigger issues a software trigger.

68 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
@

COMMAND= SETUP
FORMAT= A
PARAMETERS=

PAR_NAME= expoId
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

PAR_NAME= file
PAR_TYPE= STRING
PAR_OPTIONAL=YES
PAR_MAX_REPETITION=999

PAR_NAME= function
PAR_TYPE= STRING
PAR_OPTIONAL=YES
PAR_MAX_REPETITION=999

PAR_NAME= default
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

REPLY_FORMAT = A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT =
Setup the functions as listed. The -default flag sets all
parameters to their default values as specified in the
parameter default setup file. -file loads a setup from the
given file.
@

COMMAND= SIMULAT
SYNONYMS= SIM
FORMAT= A
PARAMETERS=

PAR_NAME= function
PAR_TYPE= STRING
PAR_OPTIONAL=YES

REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Switch to simulation mode. If function is LCU then all processes
will be launched on the local host and all HW is simulated. If no
function is specified or function is set to HW, then only the
hardware is simulated. Other values for function may be used to
set additional subsystems to simulation mode.
@

COMMAND= STANDBY
FORMAT= A
REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 69
Bring server to stand-by state. Sub-processes are running, but
the physical connection to the hardware is closed.
@

COMMAND= START
FORMAT= A
PARAMETERS=

PAR_NAME= expoId
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

PAR_NAME= at
PAR_TYPE= STRING
PAR_OPTIONAL=YES
PAR_DEF_VAL= “now”

REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Start new exposure. -at defines a start time (UTC) in the
ISO time format hh:mm:[ss[.uuuu]]. If -at is not present or
contains the value <now>, then the exposure is started
immediately.
@

COMMAND= STATUS
FORMAT= A
PARAMETERS=

PAR_NAME= expoId
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

PAR_NAME= function
PAR_TYPE= STRING
PAR_OPTIONAL=YES
PAR_MAX_REPETITION=999

REPLY_FORMAT = A
HELP_TEXT =
Get status for various functions.
@

COMMAND= STOPSIM
FORMAT= A
REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= done
PAR_TYPE= STRING
PAR_DEF_VAL= “OK”

HELP_TEXT=
Switch to normal operation mode.
@

COMMAND= VERBOSE
FORMAT= A
PARAMETERS=

PAR_NAME= on
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

PAR_NAME= off

70 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
PAR_TYPE= LOGICAL
PAR_OPTIONAL=YES

REPLY_FORMAT= A
HELP_TEXT=
Switch verbose mode on/off.
@

COMMAND= VERSION
FORMAT= A
PARAMETERS=
REPLY_FORMAT= A
HELP_TEXT=
Return the actual server version.
@

COMMAND= WAIT
FORMAT= A
PARAMETERS=

PAR_NAME= expoId
PAR_TYPE= INTEGER
PAR_OPTIONAL=YES

REPLY_FORMAT= A
REPLY_PARAMETERS=

PAR_NAME= expStatus
PAR_TYPE= INTEGER
PAR_DEF_VAL= 0

HELP_TEXT=
Wait for exposure to finish. The command immediately
returns an intermediate reply indicating the current exposure
status. The last reply is sent, when the exposure has finished.
@

MAINTENANCE_COMMANDS

TEST_COMMANDS

// --- oOo ---

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 71
7.2.3 Control Server Class

NAME

ngcdcsEVH - NGC engineering server base class

SYNOPSIS

#include <ngcdcsEVH.h>

ngcdcsEVH server();

PARENT CLASS

ngcdcsEVH: public evhTASK, public ngcdcsSRV

DESCRIPTION

NGC engineering server base class. The server is based on the
CCS event toolkit EVH. Commands can be sent to the server via
the CCS message system.

PUBLIC METHODS

ngcdcsEVH();
 Constructor method (use default controller).

ngcdcsEVH(ngcdcsCTRL *controller);
 Constructor method with specific controller.

virtual ~ngcdcsEVH();
 Destructor method.

const char *Version();
 Returns the current version string.

void SysCfgDefault(const char *cfg);
 Specify a default system configuration file to be used if no
 explicit configuration is requested via command line. By default
 no configuration file is applied but a hard-coded configuration
 for one single main-board and one acquisition module is used.

void DbPointDefault(const char *point);
 Specify a default database point to be used if no explicit point
 is requested via command line. By default the database point is
 set to <alias>ngcdcs. In any case the instance label will be added
 to the database point name. The actual point to be used is always
 stored in the public data member <dbPoint>.

void PrintUsage();
 Prints out all server command line options.

ccsCOMPL_STAT ParseArguments(int argc, char **argv);
 Parses the server command line for additional arguments.

int Xterm();
 Returns 1 in case sub-processes should start in a separate
 window.

ngcb_vb_t VerboseHandler();
 Returns the actual verbose message handler.

int VerboseLevel();
 Returns current verbose-level.

int LogLevel();
 Returns current log-level.

void Verbose(const char *format, ...);
void Verbose(int level, const char *format, ...);
 Verbose method. A message is put on the standard output depending
 on the current verbose level. The message is also logged depending

72 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
 on the current log level. If the verbose level is zero, the message
 is not printed out. If log level is zero the message is not logged.
 The second version additionally compares with a given <level> to
 be exceeded.

void Log(const char *format, ...);
void Log(int level, const char *format, ...);
 Log method. The message logged depending on the current log
 level. If the log level is zero the message is not logged.
 The second version additionally compares with a given <level> to
 be exceeded.

void AddVerbose(const char *format, ...);
 Verbose method. The message is always printed out.

void AddLog(const char *format, ...);
 Log method. The message is always logged.

virtual void VerboseCB(const char *msg);
 Verbose output call-back.

virtual void LogCB(const char *msg);
 Log output call-back.

ccsCOMPL_STAT Initialize();
 Initialize the control server (call-backs, database, ...).

ccsCOMPL_STAT Abort();
 Abort the control server. This function should be called before
 exiting. It will shutdown all all sub-modules (sequencer, CLDC,
 ADC, acquisition). The sequencer(s) will be stopped, the CLDC
 module(s) will be disabled and the acquisition processes will
 be terminated before. The last step before deleting the HW-modules
 will be a reset. After being aborted the system may be brought up
 again with the Initialize() member function.

int MainLoop();
 Enter server main loop. The function returns an exit status
 intended to be passed to the exit() function. Exit status zero
 indicates that the MainLoop returned successfully.

ccsCOMPL_STAT CmdCallback(const char *cmd, evhCB_METHOD2 method);
 Add a command call-back. The given method will be called upon
 reception of the specified command.

void EnterCB(msgMESSAGE &msg, vltLOGICAL flag=TRUE);
 This function should be called after entering a call-back method.
 If the flag has a TRUE value, this indicates, that the method
 is active (i.e. will change system parameters). If the flag
 has a FALSE value, this indicates, that the function will be
 passive (i.e. the system does not change in case of a successful
 operation).

ccsCOMPL_STAT ExitCB();
 This function should be called before leaving the call-back method.
 This will occasionally update the database and server internals
 (if something has changed).

void ExitCB(msgMESSAGE &msg);
 Same as the above function, but this will additionally send back
 the reply message.

void CleanupCB();
 Cleanup callback internals, which may have been set during
 EnterCB(). When not using the ExitCB(msgMESSAGE &msg) this
 function should be called after the last reply has been sent.

ccsCOMPL_STAT CheckSysCfg(ngcdcs_syscfg_t cfg);
 Checks the given system configuration structure (range check,
 consistency check, ...). See below for a description of the

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 73
 configuration structure.

ccsCOMPL_STAT CheckDetCfg(ngcdcs_detcfg_t cfg);
 Checks the given detector configuration structure (range check,
 consistency check, ...). See below for a description of the
 configuration structure.

virtual int LoadSysCfg(ngcdcs_detcfg_t *cfg, const char *name);
 Uploading method for system configuration. The method can be
 overloaded to implement specific file formats. Must return either
 ngcbSUCCESS in case of successful operation or ngcbFAILURE and
 an error message in ErrMsg().

virtual int LoadDetCfg(ngcdcs_detcfg_t *cfg, const char *name);
 Uploading method for detector configuration. The method can be
 overloaded to implement specific file formats. The configuration
 should be checked with the CheckDetCfg() method before returning
 with success. Must return either ngcbSUCCESS in case of successful
 operation or ngcbFAILURE and an error message in ErrMsg().

ccsCOMPL_STAT Configure(ngcdcs_syscfg_t cfg);
 Apply a new system configuration. The configuration should have
 been checked with the CheckSysCfg() method before. See below
 for a description of the configuration structure. The Shutdown()
 method is called before the new system configuration is applied.

void Shutdown()
 Shutdown all devices/modules. This function is called internally
 from within the Configure() method before a new system
 configuration is applied.

virtual ccsCOMPL_STAT ConfigureCB1(ngcdcs_syscfg_t cfg);
virtual ccsCOMPL_STAT ConfigureCB2(ngcdcs_syscfg_t cfg);
 A call-back function which is executed from within the Configure()
 method before and after internal configuration is done. By
 overloading this functions application specific system
 configuration may be added. See below for a description of the
 configuration structure.

virtual void ShutdownCB1();
virtual void ShutdownCB2();
 A call-back function which is executed from within the Shutdown()
 method before and after shutdown of the internal modules is done.
 The methods should be used to shutdown application specific
 devices/modules. The shutdown must be clean (i.e. does not
 return with an error).

int FitsBlock();
 Returns the number of FITS-header blocks as proposed by the
 system.

virtual ccsCOMPL_STAT ExpCB(int errorId,
 vltUINT32 newState,
 const char *newFile,
 const char *errorString);
 Call-back function, which is executed upon an exposure event.
 The new exposure state can be an or’ed combination of the
 following values:

 ngcdcsEXP_NONE (0)
 ngcdcsEXP_INACTIVE (1)
 ngcdcsEXP_PENDING (2)
 ngcdcsEXP_INTEGRATING (4)
 ngcdcsEXP_PAUSED (8)
 ngcdcsEXP_READING_OUT (16)
 ngcdcsEXP_PROCESSING (32)
 ngcdcsEXP_TRANSFERRING (64)
 ngcdcsEXP_COMPL_SUCCESS (128)
 ngcdcsEXP_COMPL_FAILURE (256)
 ngcdcsEXP_COMPL_ABORTED (512)

74 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
 If the state has not changed the newState will have the value
 ngcdcsEXP_NONE (0). If <newFile> is not en empty string, then
 a new file with the given name has been created. <newFile> contains
 a full path name. If <errorString> is not an empty string, then
 an error occured. The error logging will already have been done in
 that case, so this has mainly an informative purpose.

vltUINT32 ExpStatusVal();
 Returns the current exposure state.

char *ExpStatusString();
 Returns current exposure state as string value.

vltLOGICAL ExpActive();
 Returns TRUE in case the exposure is active. Otherwise FALSEE is
 returned.

ngcbPARAM_LIST *ParamList();
 Returns a pointer to the global dynamic parameter list. The
 list is used by both the acquisition modules and the sequencer
 modules. See man-page of ngcdcsACQ(4), ngcdcsSEQ(4) and ngcbPARAM(4)
 for details.

virtual void ExitSignal(int sig);
 Exit signal handler. The ngcdcsEVH::ExitSignal(sig) instance
 should always be called before adding own stuff to this call-back.

ccsCOMPL_STAT ReadAddr(ngcbIFC *dev, ngcb_route_t route, int address,
 int *buffer, int size);
 Reads size words from the given device address into buffer.
 The ngcb_route_t structure contains the following elements:

 int numHdr; - Number of headers to target including
 the terminating <0x2>
 int hdr[ngcbMAX_MOD]; - Array of headers including the
 terminating <0x2>

ccsCOMPL_STAT WriteAddr(ngcbIFC *dev, ngcb_route_t route, int address,
 int *buffer, int size);
 Writes size words from buffer to the given device address.
 The ngcb_route_t structure contains the following elements:

 int numHdr; - Number of headers to target including
 the terminating <0x2>
 int hdr[ngcbMAX_MOD]; - Array of headers including the
 terminating <0x2>

ccsCOMPL_STAT WriteBuffer(ngcbIFC *dev, int *buffer, int size);
 Writes a formatted buffer to the given interface device.
 The format of the buffer is:
 <hdr1 hdr2 ... hdrN address data1 data2 ...>

ccsCOMPL_STAT ReadAddr(int idx, ngcb_route_t route, int address,
 int *buffer, int size);
ccsCOMPL_STAT WriteAddr(int idx, ngcb_route_t route, int address,
 int *buffer, int size);
ccsCOMPL_STAT WriteBuffer(int idx, int *buffer, int size);
 Same as the above functions, but using the device instance
 number instead of the device pointer itself. The device indices
 start from zero.

ngcdcsCLDC *CldcMod(ngcbIFC *dev, ngcb_route_t route);
 Module creation hook for the CLDC module. An instance of a
 class derived from the ngcdcsCLDC class must be returned.
 The device and the route should be passed to the underlying
 constructor. In case of failure a NULL pointer should be returned
 and an error should be added to the error-stack.

ngcdcsSEQ *SeqMod(ngcbIFC *dev, ngcb_route_t route, ngcbPARAM_LIST *list);
 Module creation hook for the sequencer module. An instance of a
 class derived from the ngcdcsSEQ class must be returned.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 75
 The device and the route should be passed to the underlying
 constructor together with a pointer to a dynamic parameter list
 (for details see man-page of the ngcbSEQ(4) and ngcbPARAM(4)
 classes). In case of failure a NULL pointer should be returned
 and an error should be added to the error-stack.

ngcdcsADC *AdcMod(ngcbIFC *dev, ngcb_route_t route, int num);
 Module creation hook for the ADC module. An instance of a
 class derived from the ngcdcsADC class must be returned.
 The device and the route should be passed to the underlying
 constructor together with the number of ADC groups in this
 module. In case of failure a NULL pointer should be returned
 and an error should be added to the error-stack.

ngcdcsACQ *AcqMod(ngcdcs_acq_cfg_t cfg, ngcbPARAM_LIST *list);
 Module creation hook for the acquisition module. An instance of a
 class derived from the ngcdcsACQ class must be returned.
 A pointer to a dynamic parameter list must be passed to
 the underlying constructor (for details see man-page of the
 ngcdcsACQ(4) and ngcbPARAM(4) classes). In case of failure a NULL
 pointer should be returned and an error should be added to the
 error-stack.

virtual int PostProcCB(void *buffer, ngcdcs_finfo_t *finfo, char *erms);
 Post processing call-back, which is executed whenever a new frame
 has been received. The ngcdcs_finfo_t structure <finfo> contains
 all information for the <buffer> and has the following members:

 int type; - Unique frame type
 char name[64]; - Unique frame name
 int fcnt; - Frame counter
 int scaleFactor; - Scaling factor to be applied to normalize
 int bitPix; - Bits per pixel as defined in the FITS-standard
 int sx; - Lower left corner (x-direction)
 int sy; - Lower left corner (y-direction)
 int nx; - Dimension in x-direction
 int ny; - Dimension in y-direction
 double crpix1; - Reference pixel in x-direction
 double crpix2; - Reference pixel in y-direction
 int detIdx; - Detector index (for mosaics)
 int expCnt; - Exposure counter for this type
 char utc[64]; - Time when frame was ready in the pre-processor
 ngcdcsCUBE *cube; - Data cube object to be used for storing to a cube

 The ngcdcsCUBE class contains the following:

 FILE *fd; - File descriptor
 int naxis1; - Dimension in x-direction
 int naxis2; - Dimension in y-driection
 int naxis3; - Number of images
 int bitPix; - Bits per pixel as defined in the FITS-standard
 char fileName[256]; - Actual filename (full path)
 char frameName[64]; - Frame type name for all images in the cube
 int Size(); - Return current cube size
 Close(); - Close the cube
 int Open(const char *path, const char *name); - Open the cube

 Type and dimension should be cross checked for consistency with
 the stored values in <cube>, before adding a frame to a cube.
 The post-processing call-back may return one of the following:

 ngcbSUCCESS - Successful operation
 ngcbFAILURE - Failure (an error should be added to the error-stack)
 ngcbSKIP - Successful operation - but skip all further
 actions on the frame (no storage to file,...)

ccsCOMPL_STAT OnlineCB1();
ccsCOMPL_STAT OnlineCB2();
ccsCOMPL_STAT StanbbyCB1();
ccsCOMPL_STAT StandbyCB2();
ccsCOMPL_STAT OffCB1();
ccsCOMPL_STAT OffCB2();
 State switching hook before (1) and after (2) internal

76 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
 state-switching.

ccsCOMPL_STAT SetupCB1(char **list, vltINT32 *size);
 Call-back function, which is executed before the internal setup
 is done. The setup list contains pairs of parameter names and
 values. The list has to be examined here. Application specific
 parameters have to be removed from the list as the internal
 setup handler would report an error for those. So the list and
 size may be modified. Parameters to be handled after the internal
 setup has been done, must nevertheless be removed from the list
 and have to be kept in the overloading class in order to be
 processed afterwards in the SetupCB2().

ccsCOMPL_STAT SetupCB2();
 Call-back function, which is executed after the internal setup
 has been done. The functions to be executed have to be extracted
 in the SetupCB1() method.

virtual int LookupCB(const char *name, char *value);
 Callback for parameter lookup. The function must return
 non-zero in case the parameter given by its <name> has
 been resolved and the value had been properly set. Otherwise
 zero must be returned. The value should contain the properly
 formatted data without unit and without comment.

PUBLIC DATA MEMBERS

char dbPoint[256]; - actual database point name

int state; - Server state. This is one of

 ngcdcsSTATE_OFF (evhSTATE_OFF)
 ngcdcsSTATE_LOADED (evhSTATE_LOADED)
 ngcdcsSTATE_STANDBY (evhSTATE_STANDBY)
 ngcdcsSTATE_ONLINE (evhSTATE_ONLINE)

int subState; - Server sub-state. This is one of

 ngcdcsSUBSTATE_IDLE (1)
 ngcdcsSUBSTATE_BUSY (2)
 ngcdcsSUBSTATE_ACTIVE (6)
 ngcdcsSUBSTATE_ERROR (8)

ngcdcsACQ *acq[ngcdcsACQ_MAX_PROC]; - acquisition module instances
int numAcqMod; - number of module instances

ngcdcsCTRL *ctrl; - Instance of the controller class. See man page
 of ngcdcsCTRL(4) for details.

int readModeId; - Current read-mode id

char readModeName[64]; - Current read-mode name

ngcbDIC dictionary; - Object holding the parameter specifications
 from all loaded dictionaries.

int detIndex; - Detector category index

ngcdcs_syscfg_t sysCfg; - Current system configuration

ngcdcs_detcfg_t detCfg; - Current detector configuration

char opMode[32]; - Current operation mode. This a string value
 containing either "HW-sim" "LCU-sim" or
 "normal". It corresponds to the value of the
 sim flag (0,1,2) in the sysCfg structure.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 77
int polling; - Enable/Disable polling of sub-system status
 (default is 0 - disabled).

int pollInterval; - Polling interval (in ms). Default is 1000 ms.

The system configuration structure ngcdcs_sys_cfg_t contains
the following members:

 Interface device system configuration:
 ngcdcs_dev_cfg_t dev[ngcdcsCTRL_MAX_DEV];

 CLDC system configuration:
 ngcdcs_cldc_cfg_t cldc[ngcdcsCTRL_MAX_CLDC];

 Sequencer system configuration:
 ngcdcs_seq_cfg_t seq[ngcdcsCTRL_MAX_SEQ];

 ADC-module system configuration:
 ngcdcs_adc_cfg_t adc[ngcdcsCTRL_MAX_ADCMOD];

 Acquisition module system configuration:
 ngcdcs_acq_cfg_t acq[ngcdcsACQ_MAX_PROC];

 int numDev; - Number of interface devices
 int numCldcMod; - Number of CLDC-modules
 int numSeqMod; - Number of sequencer-modules
 int numAdcMod; - Number of ADC-modules
 int numAcqMod; - Number of acquisition modules*
 int sim; - Default operation in simulation mode
 int fitsBlock; - Number of FITS-blocks to reserve for merging
 int extFits; - Generate extended FITS-header
 int fileFormat; - Default file format
 int naming; - Default naming scheme
 int oneFile; - All in one file (FITS extension format only)
 int autoOnline; - Go on-line after start-up
 int autoStart; - Start at on-line
 char detCfgFile[256]; - Default detector configuration file
 char fileName[256]; - Optional filename
 char dsup[256]; - Optional default parameter setup file
 int polling; - enable/disable polling of sub-system status
 int pollInterval; - Polling interval in ms

The interface device configuration structure ngcdcs_dev_cfg_t contains
the following members:

 char name[128]; - Device name
 char env[32]; - Environment name
 char host[64]; - Host where physical interface resides
 char srv[64]; - Optional driver interface process name
 char type[32]; - Optional interface type

The CLDC module system configuration structure ngcdcs_cldc_cfg_t
contains the following members:

 int devIdx; - Device index
 ngcb_route_t route; - Route to module
 int autoEnable; - Enable at on-line
 double margin; - Margin for voltage check (in volts)
 double telemetryGain; - Gain factor for telemetry
 char name[64]; - Optional name

The sequencer module system configuration structure ngcdcs_seq_cfg_t
contains the following members:

 int devIdx; - Device index
 ngcb_route_t route; - Route to module
 char name[64]; - Optional name

78 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
The ADC module system configuration structure ngcdcs_adc_cfg_t
contains the following members:

 int devIdx; - Device index
 ngcb_route_t route; - Route to module
 int num; - Number of ADC groups on board
 int bitPix; - Number of bits per pixel (16, 18, ...)
 char name[64]; - Optional name

The acquisition module system configuration structure ngcdcs_acq_cfg_t
contains the follwoing members:

 int cmdPort; - Optional command server port (default is zero)
 int dataPort; - Optional data server port (default is zero)
 int numDataClient; - Number of data clients
 int transferMode; - Data transfer mode. Can be one of

 ngcppTMODE_VIDEO - video transfer for RTD
 ngcppTMODE_SCIENCE - transfer to file

 char host[64]; - Acquisition process host
 char dev[128]; - Acquisition process DMA device name
 int seqIdx; - Associated sequencer instance

See man page of ngcbIFC(4) for a definition of the ngcb_route_t structure.

The detector configuration structure ngcdcs_detcfg_t contains the
following members:

 char fileName[256]; - Optional filename for this
 char dsup[256]; - Optional default parameter setup file

 Sequencer module detector configuration:
 ngcdcs_seq_dcf_t seq[ngcdcsCTRL_MAX_SEQ];

 CLDC module detector configuration:
 ngcdcs_cldc_dcf_t cldc[ngcdcsCTRL_MAX_CLDC];

 ADC module detector configuration:
 ngcdcs_adc_dcf_t adc[ngcdcsCTRL_MAX_ADCMOD];

 ngcdcs_chip_t chip[ngcdcsMAX_DET]; - Chip information
 int numDet; - Number of detectors in mosaic
 char name[32]; - Detector system name
 char id[32]; - Detector system id
 int numOutput; - Total number of outputs
 int splitX[ngcdcsMAX_ACQPROC]; - Split to FITS extensions
 int splitY[ngcdcsMAX_ACQPROC]; - Split to FITS extensions
 ngcdcs_rm_t rm[ngcdcsMAX_RM]; - Read-out modes
 int numReadMod; - Number of read-out modes
 int rmDefault; - Default read-out mode

The sequencer module detector configuration structure ngcdcs_seq_dcf_t
contains the following members:

 char clkFile[256]; - Clock pattern file to load
 int timeFactor; - Default dwell-time factor
 int timeAdd; - Default dwell-time add
 int continuous; - Operate in continuous mode
 int runCtrl; - External run-control

The CLDC module detector configuration structure ngcdcs_cldc_dcf_t
contains the following members:

 char voltageFile[256]; - Voltage file to load

The ADC module detector configuration structure ngcdcs_adc_dcf_t
contains the following members:

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 79
 int delay; - Default conversion strobe delay
 double offset[32]; - Default offset per group
 int enable; - Number of enabled ADCs on board
 int simMode; - Simulation mode
 int opMode; - Operation mode
 int packetSize; - Default packet size
 int packetCnt; - Default packet routing length
 int convert1; - Conversion on strobe 1
 int convert2; - Conversion on strobe 2

The read-out mode definition structure ngcdcs_rm_t contains the
following members:

 char name[64]; - Name
 char desc[256]; - Description
 char seqPrg[ngcdcsCTRL_MAX_SEQ][256]; - Sequencer programs
 char acqProc[ngcdcsACQ_MAX_PROC][64]; - Processes for acquisition
 modules
 char dsup[256]; - Default parameter setup file
 int id; - Unique id
 int hwWin; - HW-window supported

The chip info structure ngcdcs_chip_t contains the following members:

 int posX; - x-position in mosaic
 int posY; - y-position in mosaic
 int nx; - x-dimension (in pixels)
 int ny; - y-dimension (in pixels)
 int adjustMode; - Window adjustment mode (0=free, 1=center, ...)
 int adjustX; - Window adjustment step in x-direction
 int adjustY; - Window adjustment step in y-direction
 int index; - Unique index
 double pixSpace; - Pixel to pixel space (meter)
 double pszx; - Size of pixel in x (um)
 double pszy; - Size of pixel in y (um)
 double xgap; - Gap between chips along x (um)
 double ygap; - Gap between chips along y (um)
 double rgap; - Angle of gap between chips (deg)
 int rotAngle; - Rotation angle of chip in mosaic (0, 90, 180, 270)
 int live; - Detector live (=1) or broken (=0)
 int numOutput; - Number of output channels
 char type[32]; - Detector type
 char name[32]; - Detector name
 char id[32]; - Another detector identification string
 char date[16]; - Installation date [YYYY-MM-DD]
 int acqIdx; - Acquisition module index

ENVIRONMENT

The environment variables INS_ROOT and INS_USER are used to build
the basic search paths ($INS_ROOT/$INS_USER/...) for configuration
files unless absolute paths are given. If the INS_USER environment
variable is not set, then the default value SYSTEM is assumed.

RETURN VALUES

If not specified differently, all member functions return SUCCESS
in case of success. Otherwise FAILURE is returned and an error
is added to the error-stack.

SEE ALSO

ngcbIFC(4), ngcbIFC_MSG(4), ngcbPARAM(4), ngcbOBJ(4), ngcbMOD(4),
ngcbDIC(4), ngcdcsSEQ_CLASS(4), ngcdcsCLDC_CLASS(4), ngcdcsADC_CLASS(4),
ngcdcsACQ_CLASS(4), ngcdcsACQ_DATA_CLASS(4), ngcdcsCTRL_CLASS(4),
evhTASK(4)

80 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

	1 INTRODUCTION
	1.1 Purpose
	1.2 Scope
	1.3 Applicable and Reference Documents
	1.4 Glossary
	1.5 Abbreviations and Acronyms

	2 OVERVIEW
	2.1 System Architecture
	2.2 Processes
	2.3 Software Modules
	2.4 Test Software

	3 CONTROL SERVER
	3.1 Database
	3.2 Server States
	3.3 Verbose Mode and Logging
	3.4 Error Handling
	3.5 Configuration
	3.5.1 Controller Electronics System Configuration
	3.5.2 Detector Configuration
	3.5.3 Directory Tree
	3.5.4 Configuration Modules

	3.6 Simulation Mode
	3.7 Parameter Setup
	3.8 Server Extensions
	3.9 Maintenance Mode

	4 EXPOSURES
	4.1 Read-Out Modes
	4.2 Frame Types
	4.3 Windows
	4.4 Burst Mode
	4.4.1 Raw Data Mode
	4.4.2 Internal Burst Mode

	4.5 File Formats
	4.6 Data File Naming
	4.7 Detector Mosaics
	4.8 Post-Processing
	4.9 Exposure Control
	4.10 Timing Accuracy
	4.11 Chopping Mode

	5 GRAPHICAL USER INTERFACE
	5.1 User Interface Classes
	5.2 Notebook Area
	5.3 Server Preferences and System Configuration

	6 TRACEABILITY MATRIX
	6.1 NGC Requirements from [AD6]
	6.2 NGC Software Requirements from [AD7]
	6.3 Adaptive Optics Requirements for NGC from [AD20]

	7 APPENDIX
	7.1 Database Classes
	7.1.1 Sequencer Class
	7.1.2 CLDC Class
	7.1.3 ADC Class
	7.1.4 Controller Base Class
	7.1.5 Acquisition Module Class
	7.1.6 System Status Class
	7.1.7 Exposure Class
	7.1.8 Read-Out Mode Definition Class
	7.1.9 Guiding Class
	7.1.10 Chopper Interface Class
	7.1.11 Server Class

	7.2 Reference
	7.2.1 ngcircon Server
	7.2.2 Command Definition Table
	7.2.3 Control Server Class

