EUROPEAN SOUTHERN OBSERVATORY

Organisation Européenne pour des Recherches Astronomiques dans I’'Hémisphére Austral

Europaische Organisation fur astronomische Forschung in der stdlichen Hemisphére

VERY LARGE TELESCOPE

r ESO New General Detector Controller B
Infrared Detector Control Software
Design Description
Doc.No. VLT-SPE-ESO-13660-3837
Issue 2.5
L Date 25/05/07 N
J. St egnei er 25/ 05/ 07
PrEPAIEU ... e
Name Date Signature
G Fi nger
Approved...............g‘l ...
Name Date Signature
A. Mbor wood
(4T [=T= 1T
Name Date Signature

VLT PROGRAMME * TELEPHONE: +49 89 32006-0 * FAX: +49 89 320 2362

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

Change Record

I ssue/Rev. Date Section/Page affected Reason/Initiation/Document/Remarks
01 30/11/05 All First preparation.
10 27/03/06 2 Restructured. Added section for test software.
3 Added sections for logging and error handling.
4.6 The users access rights for the data-path are
checked before the exposure is started.
4.8 Added post-processing control loops.
4.9 Added acquisition process continuous mode.
31to34 Order has been changed. Voltage telemetry
check added.
34 Sytsem can be configured for pure hardware
control aswell as for pure data acquisition.
3.7 Added directory tree.
3.9 Configuration modules.
6 Added traceability matrix.
7 Updated.
2.0 10/08/06 All Revised version.
21 30/08/06 31 New database architecture.
7 Updated man-pages.
22 03/01/07 All Aligned with ne naming conventins.
7 Updated man-pages and CDT.
23 19/02/07 5 Updated panel screenshots.
7 Updated database, man-pages and CDT.
24 19/02/07 5 Updated panel screenshots.
25 25/05/07 7 Updated man-pages.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 5

1

TABLE OF CONTENTS

INTRODUCTION 7
L L PUIPOSE .« .ot 7
I o] o] o1 P 7
1.3 Applicable and Reference DOCUMENTS ittt e e e e e e 7
L4 GlOSSaIY . . oottt e e 7
1.5 Abbreviations and ACrONYIMSottt e 7
OVERVIEW 9
2.1 SysStem ArChITECTUIE 9
2.2 PrOCESSES . . . ittt 9
2.3 Software Modules 11
24 TSt SOMtWANE . ..o 12
CONTROL SERVER 13
3.1 Database 13
3 2 SBIVEI SHAS . . oo 14
3.3 Verbose Mode and LOgQing.ottt 14
34 Error Handling. o 14
35 CONfIgQUIALION . . . o 15

3.5.1 Controller Electronics System Configuration................................ 15

3.5.2 Detector Configuration.t 18

3.5.3 DIreCIOrY T .ottt e e e e e 20

3.5.4 Configuration Modules i e 20
3.6 Simulation Mode 20
3.7 Parameter SBIUD . . .o 21
3.8 SEIVEN EXIENSIONS. . ottt 22
3.9 Maintenance MOAEe o 22
EXPOSURES 23
41 Read-OULt MOAESot 23
4 2 FraME Ty PBS . .t ittt e e 23
4.3 WINOOWS . . oot 23
44 BUISEMOOEo 24

441 Raw DataMode. 24

442 Internal BUrSEMOOE 25
45 File FOrmats o 25
4.6 DataFile Naming. e e e 26
4.7 DeteCtor MOSAICSottt ettt e e e e e e 27
4.8 POSE-PrOCESSING . . .\ttt et e e 27
4.9 EXposure Control. e e 27
410 TIMING ACCUFACY . . o\ vttt et e ettt e e e e e e e e e e e e e 29

411 Chopping MOde. 29

6 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

5 GRAPHICAL USER INTERFACE 31
51 UserInterface Classest 31

5.2 NOtEDOOK ArEa . . . o 33
5.3 Server Preferences and System Configuration, 36

6 TRACEABILITY MATRIX 39
6.1 NGC Requirements from [ADG] e 39
6.2 NGC Software Requirements from [AD7] 48
6.3 Adaptive Optics Requirements for NGC from [AD20] 52

7 APPENDIX 55
7.1 Database Classest 55
711 SEQUENCEN Class . oottt et e e 55

712 CLDC ClaSS. « ottt ittt e e e e e 56

7013 ADC ClaSS. o o ittt et e e 57

7.1.4 Controller Base Class.t 57

7.1.5 Acquisition Module CIass i 58

7.1.6 System Status Class. 59

717 EXPOSUIE Class. . ottt et e e e e e 60

7.1.8 Read-Out Mode Definition Class. i 60

7.1.9 GUIAING Class. . ..o e 61

7.1.10 Chopperinterface Class i e e e e 61

70111 Server Class . ..o 61

7.2 REIEIENCE . . .o 62
7.2.1 NQCIFCON SEIVEL . . ottt et e e e 62

7.2.2 Command Definition Table 63

7.2.3 Control SErver Class oo 71

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 7

1 INTRODUCTION

1.1 Purpose

The document describes the design of the detector control software for infrared applications using
the ESO New General detector Controller (NGC). It addresses to the hardware developer in the lab,
to the detector specialist, to all instrument users including those of external consortia and to all soft-
ware developers interfacing to the infrared detector control software.

1.2 Scope

The new general detector controller will be used for both optical and infrared applications. The
NGC base software [AD9] covers all software functionality which does not yet impose any restric-
tion in what will actually be done with the NGC. The software will become infrared and optical ap-
plication specific when entering the data acquisition and when running exposure loops.
Additionally some optical and infrared application specific devices need to be supported by soft-
ware (shutter, chopper). So in the end there will be two specific control servers. This also implies
the design of two different graphical user interfaces and two database branches. Nevertheless un-
necessary differences should be avoided.

This document describes the server and GUI implementation for infrared applications. The possi-
bility to scale down the control server for pure hardware control gives the oppotunity to use the
server as a core process also in other applications, which then can apply different data taking and
exposure mechanisms. In that sense also the associated engineering GUI may be used for common
purposes.

The setup keywords will have a common root (the NGC dictionary in the software module “dic-
NGC™). Specific extensions will be described in additional dictionaries (TBD). The keyword names
mentioned in this document are based on a first draft of the common dictionary, but they may still
be subject to changes.

1.3 Applicable and Reference Documents

All applicable and reference documents are listed in the “NGC Project Documentation” document,
VLT-LIS-ESO-13660-3906.

1.4 Glossary

See NGC Project Glossary [AD63].

1.5 Abbreviations and Acronyms

See NGC Project Acronyms [AD64].

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 9

2 OVERVIEW

2.1 System Architecture

The NGC infrared detector control software (NGCIRSW) is running partly on the instrument work-
station (IWS) and on the NGC-LCU, where the physical interface(s) to the NGC detector front end
reside. The NGC-LCU is a PC running a Linux operating system (kernel 2.4 or higher). All system
communication is done via the control server. The control server is configured through configura-
tion files or setup commands. The commands are received via the CCS message system. Image data
is written to FITS files. Internal server data (status, current setup, ...) is mirrored in a database. Set-
up- and control-commands can be sent from a graphical user interface (GUI), which reads back the
server settings from the database. Image data is visualized in one or more real time displays (RTD),
which directly connect to the acquisition processes (see [AD9] for the data transfer mechanism) or
may also read the data from the FITS file created by the control server. File creation is com-
municated through database events. The image data is received asynchronously from the acquisi-
tion processes.

LAN
PCI-Bus
Interfaces
IWS
FITS- NGC-LCU1
Files NGC- |
™ nach2Drv Network
T RTD g ®
Config.
; —<
Files
] Acquisition I_
B = Process NGC- |
Control Network
Command Server —

@<
EDE_T)
NGC- — /
Network
@<

NGC-LCUn

ngcb2Drv
@\ N ngcb2Drv
~ \
TD

Database

P
g rocess Network
[~ @
Acquisition
Process
 —

Figure 1 System Architecture

2.2 Processes

The control server communicates with the NGC hardware through driver interface processes
(ngcb2Drv) running locally on the NGC-LCUs where the physical interfaces reside. The exact mech-
anism is described in [AD9]. One driver interface process is launched per physical interface device.
The control server creates one ngcblFC interface instance per physical device. In case the control
server is not running locally on the NGC-LCU, the interface would include the driver interace pro-
cess (using the derived ngcblFC_MSG class instead of ngcblFC) as it is shown in Figure 2.

10 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

Running locally on NGC-LCU
ControlServer:
interface->ReadAddr()
interface->WriteAddr()
Device
ngcbIFC Driver
Running somewhere Running locally on NGC-LCU
ControlServer: (” ngcb2Drv:
interface->ReadAddr()
interface->WriteAddr()
interface->ReadAddr()
Handle interface->WriteAddr() _
ngcblFC_MSG — > Command Device
essage ngcblFC Driver
System

Figure 2 Control Server and Driver Interface Process

The acquisition processes are also launched and controlled by the control server. One ngcdcsACQ
class instance (see [AD?9]) per process is created in the control server to build the command interface
and the asynchronous data interface. Nevertheless this does not imply that a process is actually
running “on” this module in all operational modes. So it may happen that one or more of those
ngcdcsACQ instances remain in an “idle” state during an exposure.

For maintenance and development operations all processes shown on the IWS side may run also lo-
cally on one of the NGC-LCUs. For software testing and software development all processes may
run in simulation mode on the IWS.

In normal operation the driver interface process(es) on the NGC-LCU and the acquisition processes
are allowed to receive commands only from the control server. There is no direct interaction fore-
seen between these processes and any higher level software except the data connection between the
RTD and the acquisition process. For debugging purposes and software development it is possible
to send commands directly to all processes (TBD).

The execution of the control processes normally does not require any special user privileges to be
granted by the operating system. However the acquisition processes on the NGC-LCU benefit from
the real-time capabilities granted by the Linux operating system to processes with super-user privi-
leges.

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837 11

2.3

Software Modules

All software modules are under CMM configuration control.

ngcdrv

ngcb

ngcpp

ngcdcs

ngcircon

ngclir?]gui

The device driver for the PCI-Bus back-end card.

The NGC basic software module containing the driver interface library
(ngcbDrv) for communication and DMA, some basic i/0 tools, a portable
threads- and priority-control implementation and the C++ base classes for
general system access. This module also provides a hardware simulation
mechanism for the NGC controller.

The DMA data-acquisition and pre-/processing module.

The NGC detector control software base module implementing the classes for
the NGC hardware modules (sequencer, CLDC, ADC) and the interfaces to the
data acquisition.

The NGC system coordination module for infrared applications. This includes
the infrared control server instance and all additional infrared specific device
classes (chopper, special ADC or CLDC hardware releases, etc.). It also contains
all required scripts for system startup and shutdown.

An engineering GUI used for direct system interaction and data acquisition. It
could also be part of either the ngcircon or ngcdcs module (TBD).

A dictionary, which is common to both infrared and optical systems, is stored in the dicNGC soft-
ware module.

The software module ngcarch provides automatic installation procedures for all the mentioned
software modules.

12 NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

e

ngcpp

ngch
ngcbDry
ngcblFC, ngcbSIM
ngcbOBJ
ngcbMOD
ngcbTHREAD, ...

dicNGC

I

(infrared specific)

ngcircon
ngclir?[gui

T

ngcdcs

.SEQ
..CLDC
ADC

..ACQ_DATA
~ACQ

ngcarch

/

EVH
Server

WI specific)

ngco...

7

Figure 3 Modu

2.4 Test Software

le Dependencies

Test scripts for the TAT (see [RD41]) are developed in parallel to the software module code genera-
tion. Test configuration files are created for various virtual system architectures and detector assem-

blies to cover all possible ranges of complexity.
module ngcpp does not contain TAT test scripts,

The DMA data-acquisition and pre-/processing
but fully working test/template acquisition pro-

cesses instead, which are then embedded in the test scripts and test configuration files of the higher

level ngcdcs and ngcircon modules.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 13

3 CONTROL SERVER

The control server is based on the CCS Event Tool Kit EVH (see [RD33], [RD35]). A base class
(ngcdcsEVH) and a basic engineering server instance (ngcdcsEvh - see section 7.2.1) are part of the
ngcdcs module. The infrared control server instance (ngcircon) derives from the ngcdcsEVH class
and introduces additional, specific behavior.

Several instances of the control server may run within the same environment. In this case an in-
stance label (string) must be passed via the “-inst” command line option to distinguish between the
systems. The instance label is used as appendix “_<I| abel > for both the database branch (see sec-
tion 3.1) and for the server process name registered with the CCS environment.

All communication with the control server is done via the CCS message system and the online data-
base. Any process in the VLT environment, which is able use to this communication structure, can
directly interface to the system. In particular this involves the execution of test templates via BOB
and the VLT control software HOS sequencer.

3.1 Database

Database classes for the controller modules and for the data acquisition are defined in the ngcdcs
modaule (see section 7.1). This also contains base classes for exposure definition and for the overall
system status (state, sub-state, system parameter-table, etc.).

The infrared detector control and data acquisition server (ngcircon) uses a database class (ngcircon-
SERVER.class), which puts all these classes together. The file ngcircon.db finally contains the data-
base branch definition. This file has to be included in the DATABASE.db file of the environment.
The following macros can be defined before each inclusion:

#defi ne ngcirconl NSTANCE ngci rcon_nyl nst ance

#i ncl ude “ngcircon. db”

ngcirconINSTANCE becomes the alias of the database point for this branch. The appendix <myin-
stance> should be the instance label as passed to the server with the “-inst” command line option. If
not defined, ngcirconINSTANCE defaults to “ngcircon” (which is used by the server when setting
no instance label). ngcirconROOT is the absolute path of the database root. If not defined it defaults
to <ngcirconINSTANCE>.

The basic structure of the database is as follows:

--0 <alias>ngcirconl NSTANCE --|--0 system (NGC system par anet ers)
| --o0 exposure (exposure paraneters)
| --o nmode (read-out node paraneters)
| --o guiding (gui di ng node par aneters)
| --o0 chopper (chopper interface)
| --0 seq_<i> (sequencer paraneters)
|--0 cldc_<i> (CLDC par anet ers)
| --0 adc_<i> (ADC nodul e paranet ers)
| --0 acq_<i> (acqui sition nodul e paraneters)

The branches for the sequencer-, CLDC-, ADC-, and acquisition classes are indexed. One branch
will be created per module.

14 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

3.2 Server States

The server state is called “OFF” when no server process is running. Starting the server initializes the
state to “LOADED”. Then it is possible to send further commands to the control server. If a default
detector configuration was specified in the system configuration, the detector configuration is load-
ed into the server. The command STANDBY brings the server to the “STANDBY”-state. If the server
is not running locally on the NGC workstation, a driver interface process is started locally on the
NGC workstation. The acquisition process is not yet running. The command ONLINE opens the
connection to the physical device(s) and configures all modules according to the current system-
and detector-configuration and also launches the acquisition process, if one was defined (“ON-
LINE”-state). The voltage telemetry of all CLDC instances is automatically checked before going to
“ONLINE”-state. In “ONLINE” state the voltage telemetry can be checked at all times. Before going
to “ONLINE”-state the SW reads all relevant product information (serial number, product code, re-
vision number) from the hardware. This information is used to check the actual system configura-
tion for consistency and to introduce revision specific behavior. It is possible to go directly from
“LOADED”- to “ONLINE”-state and vice-versa (with the command OFF). When going from “ON-
LINE” to “STANDBY” the acquisition process terminates, the sequencer is stopped, the CLDC volt-
age outputs are all disabled and the connection to the physical device is closed. The OFF command
additionally terminates the driver interface process.

The detector front-end can be reset using the RESET command. This can be done in any state except
“OFF”. The acquisition process will always be stopped in this case.

The system is set to “OFF”-state when an EXIT command is received.

The server sub-state is “busy” during command execution. In case the server was not able to recover
by itself from an error, the sub-state is “error” (i.e. the server is in error state). While an exposure is
running, the sub-state is “active”. In all other cases the sub-state is “idle”.

The server state is stored in the database attributes ‘<alias>ngcircon:system.state/subState’. A
translation of the state numbers into a string value is stored in ‘<alias>ngcircon:system.stateName/
subStateName’.

3.3 Verbose Mode and Logging

Verbose messages can be printed on the standard output stream of each process. The detail is given
by a verbose level, which is also passed as parameter to the control server (*-v <level>" command
line option). To make the messages of the sub-processes visible, it is required to start those processes
in a separate terminal (this is controlled with the “-xterm” command line option).

Error - logging will be done with the standard CCS error logging facility, which includes the auto-
matic logs like tracing of any received/sent command (see [AD27], [RD32]). Additionally the ver-
bose output can be logged in a detail depending on a given log-level for maintenance/debugging
purposes. Operational logs are TBD.

3.4 Error Handling

The CCS error mechanism [RD32] provides a classification scheme for application specific errors.
The NGC base software uses this mechanism. The introduction of new error codes is limited to cas-
es, where specific actions (“reset”, “restart server”, “restart CCS environment”, “reboot” etc.) are re-
quired. Other errors, which leave the system still in a valid state without further interaction
(“parameter out of range”, “invalid file name”,..) are trapped by an overall system error

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 15

(ngcbhERR_SYSTEM, ngcdcsERR_SYSTEM) plus an appropriate message string. The meaning of the
error class and the possibly needed interactions are described in a help file (.hlp), which can be dis-
played with the standard CCS-tools (also with the logMonitor). The actual error reason (“timeout”,
“link channel error”,...) is given in an associated error message string. A draft list of possible error
classes is given in [AD?9].

3.5 Configuration

The overall configuration is divided into controller electronics system configuration and detector
configuration. The controller electronics system configuration describes the hardware system used.
The detector configuration describes the usage of the system with respect to the connected detec-
tor(s). There are cases, where more than one detector is driven by the same hardware and the
switch between the detectors has to be done by applying a different detector configuration (i.e. en-
able/disable a different set of CLDC- and/or ADC-modules). To reflect such cases, where different
detector configurations are used on the same system configuration (or vice-versa the same detector
configuration is used on different system configurations), the two files have to be kept separated in
order to avoid to unnecessarily duplicate the information.

3.5.1 Controller Electronics System Configuration

The system configuration is given in a configuration file (short FITS format). The file can be speci-
fied via the “-cfg” command line option of the control server. A new system configuration file can
be loaded at server run-time via a setup command (DET.SYSCFG <filename>). The file content is
translated by an upload-method into a structure of type ngcdes syscfg t. A CheckSys-
Cfg(ngcdces_syscfg_t cfg) member function will check ranges and consistency of the members of such
a structure. The structure is applied via the Configure(ngcdcs_syscfg_t cfg) method, which also fore-
sees two call-backs to configure additional stuff before and after internal configuration is done. So it
is not mandatory to fill the structure by loading a file as it is given in the below example. The con-
figuration may still be loaded from an on-line database or whatever file format by adding a special
uploading function or changing the default one. However the loading of such a keyword based file
has been proven to be robust and fail-safe in the past and it is also easy to be inspected by view in
its raw loadable format. An editing tool (ngc[ir]guiCfg) for the system configuration is provided by
the ngc[irjgui module (see section 5.3).

The system configuration includes all information to identify the hardware configuration including
the interface device names and the computing architecture (host names, environments,...). Here the
controller interfaces are defined and associated to the linear list of hardware modules. Each device
is declared via a block of keywords giving the device name (DET.DEVi.NAME), the host name
(DET.DEVIi.HOST), where the physical interface resides, and the name of the CCS environment
(DET.DEVIi.ENV) running on this host. If no host name is specified (empty string), the interface is
assumed to be on the same computer where also the control server is running. In this case no addi-
tional driver interface process will be launched and the environment name is ignored (like the op-
tional “driver interface process” name in DET.DEVi.SRV). If the host name is set to the local host
name ($HOST), the driver interface process would be started even if it was not really needed. This
is used for testing the software when running in simulation mode on a single workstation. Finally
an optional device type (DET.DEVIi.TYPE) can be given in order to use other interface devices de-
rived from the ngcbIFC class.

The NGC hardware modules (sequencer, CLDC, ADC) are realized in SW also in a modular way
(C++ classes ngcdcsCLDC, ngedesSEQ, ngedcsADC, - see [AD9]). One class instances of the respec-
tive type is created for each hardware module in the NGC detector front end. The interface object
(as specified via the DET.DEVi keywords) is given as parameter to the module class instances to-

16 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

gether with the linking route through the interface to the target module. So finally the server will just
see linear lists of sequencer-, CLDC- and ADC-modules independent from the nesting structure of
the NGC hardware module network(s).

Each of the hardware modules (SEQ, CLDC, ADC) gets one interface device assigned, through
which it is accessed. The assignment is done via a reference index in the DET.SEQi.DEVIDX,
DET.CLDCi.DEVIDX, DET.ADCi.DEVIDX keywords. For each of the modules an optional name
can be defined.

The acquisition modules also have to be declared here. For each DMA device one module needs to
be defined. This does not yet define the actual process, which will be launched by the module. The
modules are attached to individual sequencer instances with the DET.ACQIi.SEQIDX keyword.
Each module refers to exactly one sequencer, which “produces” the detector data received by it.
Several acquisition modules may be associated to the same sequencer instance. This association is
needed to have the information, when the processes need to be (re-)started or stopped. If no index is
defined a default value of 1 (first sequencer) will be used. The negative index (-1) tells the system not
to associate the acquisition module to any sequencer.

There is no restriction in the number of hardware modules and the number of acquisition modules.
So the system may be configured for pure hardware control (no acquisition modules) or even for
pure data acquisition (no controller interface device, no hardware module).

In case several sequencer modules are in the system, it will be possible to start/stop them (plus the
process on the associated acquisition modules) individually or all at once (synchronously). If several
CLDC modules are in the system, it would likewise be possible to enable/disable them individually
or all at once. But here there is the restriction, that a (checked) voltage configuration file must have
been loaded into such a CLDC module, before it can be enabled automatically with an “enable all”
command.

The controller electronics system configuration parameters are described in a dictionary [AD37]. Be-
fore going to “ONLINE”-state the actual hardware is checked against this configuration and an er-
ror is reported in case something does not match.

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

17

Example of System Configuration File:

Server configuration

DET. DETCFG

“test.dcf”;

Exposure frane configuration

DET. FRAM FORVAT “extension”;
DET. FRAM MULTFI LE F;
DET. FRAM NAM NG “request”

Device description

DET. DEV1. NAMVE
DET. DEV1. HOST
DET. DEV1. ENV
DET. DEV1. SRV
DET. DEV1. TYPE

CLDC nodul es
DET. CLDC1. DEVI DX
DET. CLDC1. ROUTE
DET. CLDC1. AUTOENA
DET. CLDC1. MARG N
DET. CLDC1. NAMVE
DET. CLDC2. DEVI DX
DET. CLDC2. ROUTE
DET. CLDC2. AUTOENA
DET. CLDC2. MARG N
DET. CLDC2. NAME

“/dev/ ngcO_cont;

“ $RTAPENV” ;

1
“ o

Sequencer nodul es

DET. SEQL. DEVI DX
DET. SEQL. ROUTE
DET. SEQL. NAVE
DET. SEQ2. DEVI DX
DET. SEQ2. ROUTE
DET. SEQ2. NAVE

ADC nodul es

1;

“gr
“Sequencer 17;
1;
“5,2";
“Sequencer 27;

DET. ADCL. DEVI DX 1;

DET. ADCL1. ROUTE “27,

DET. ADCL1. NUM 4;

DET. ADCL. BITPI X 18

DET. ADCL. FI RST T;

DET. ADCL. PKTCNT 1;

DET. ADC1. NAME “ADC- Modul e 17;
DET. ADC2. DEVI DX 1;

DET. ADC2. ROUTE “5,2";

DET. ADC2. NUM 4;

DET. ADC2. FI RST F;

DET. ADC2. PKTCNT 0;

DET. ADC2. NAMVE “ADC- Modul e 2”;

Acqui sition nodul es

DET. ACQL. DEV “/dev/ ngcO_dm”
DET. ACQL. HOST * $HOST” ;

DET. ACQL. CMDPORT 0;

DET. ACQL. DATAPCRT O0;

DET. ACQL. NCLI ENT 2;

DET. ACQL. SEQ DX 1;

DET. ACQ2. DEV
DET. ACQ2. HOST

“/dev/ngcl_dm”;
* $HOST” ;

DET. ACQR. CMDPORT ~ 0;
DET. ACQR. DATAPORT 0;
DET. ACQR. NCLI ENT 2;
DET. ACQR. SEQ DX 1;

B H H*

R E T

HH R H R H

ST T g R I 1S

T T T g g e 1S

default detector configuration

default FITS-file format
generate multiple files
default FITS-file nam ng schene

associ at ed devi ce nane

host where interface resides
server environnent nane
optional server nanme
optional type

associ at ed devi ce index

route to nodul e

aut o-enabl e at online

margin for voltage check (in volts)
optional nane

associ at ed devi ce index

route to nodul e

aut o-enabl e at online

margi n for voltage check (in volts)
optional name

associ at ed devi ce i ndex
route to nodul e
optional nanme
associ at ed devi ce i ndex
route to nodul e
optional nanme

associ at ed devi ce index

route to nodul e

nunber of enabled ADC units on board
nunber of bits per pixe

first in chain

packet routing length

optional nanme

associ at ed devi ce i ndex

route to nodul e

nunber of enabl ed ADC units on board
first in chain

packet routing length

optional nanme

DVA devi ce nane

host name for acq.-process
acq. - process conmand port (optional)
acq. -process data port (optional)
max. number of data server clients
associ at ed sequencer instance

DVA devi ce nane

host name for acq.-process
acq. - process conmand port (optional)
acq. -process data port (optional)
max. number of data server clients
associ at ed sequencer instance

18 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

3.5.2 Detector Configuration

Once the system is basically configured, a certain configuration for a detector (or a detector mosaic)
needs to be applied. Similar to the controller electronics system configuration the detector configu-
ration is also stored in a configuration file (short FITS format), which can be loaded at server run-
time via a setup command (DET.DETCFG <filename>). The file content is translated by an upload
method into a structure of type ngcdcs_detcfg_t. If the system is in online state, the configuration is
directly applied to the hardware. Otherwise a preset is done, which is applied when going online at
a later time.

In the detector configuration file the chips used in this setup are defined. The chips get a name, an
id, a type and some more information (like position/gaps in a mosaic) assigned. Most of these
(DET.CHIPi.XXXX) keywords are just forwarded to the FITS-file header. The DET.CHIPi.NX/NY
keywords define the detector dimension used as a basis for all images and windows. The
DET.CHIPS keyword defines the number of chips in a mosaic (default value is “1”). There is also a
keyword to assign this chip to a certain acquisition module (DET.CHIPi.ACQIDX). This is required
to pass the right frame dimensions and window parameters to the associated acquisition process. A
zero index means that the chip definition applies to all acquisition modules.

The detector configuration file defines the clock pattern configuration files, which have to be loaded
into the sequencer module(s) for this detector/mosaic (DET.SEQi.CLKFILE), and also the default
values for the global state dwelltime (DET.SEQi. TIMEFAC/DET.SEQi.TIMEADD) and the “continu-
ous mode” flag (DET.SEQIi.CONT). The DET.SEQi.RUNCTRL keywords give the information which
sequencer instances will be started synchronously (i.e. will react on the external run-signal). The de-
tector voltage configuration files (DET.CLDCi.FILE) have to be specified for all CLDC modules
which are used in this detector configuration. Not used CLDC modules can simply be skipped and
their outputs will not be automatically enabled together with the other ones.

For each ADC module declared in the system configuration some keywords can be entered to tune
the A/D conversion (delays, offsets), to set the modules to various simulation modes or to enable/
disable groups of ADCs on this module.

The detector configuration also declares the read-out modes to be used with the given chip(s). Each
read-out mode is defined by a block of keywords assigning the name of the mode
(DET.READI.NAME), specifying the sequencer program(s) to be loaded (DET.READI.SEQi), the ac-
quisition processe(s) to be launched on the defined acquisition modules (DET.READI.ACQI), a de-
fault parameter setup file (short FITS format) to be loaded, whenever the mode (DET.READi.DSUP)
is selected, and a short description string (DET.READi.DESC). A default read-out mode can be spec-
ified by its index (as given in DET.READI). The default read-out mode is applied, whenever the file
is loaded respectively when the server switches to online state after the file has been loaded.

The detector configuration parameters are described in a dictionary [8].

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

19

Example of Detector Configuration File:

Chip definition

Detector systemdefinition

DET. NAVE “nyNane” ; # detector system nane
DET. I D “myl d”; # detector systemid
DET. CHI PS 1; # nunber of chips in nosaic

DET. CHI P1. NAME “myChi pNarme”; # chip nane

DET.CH P1. 1D “myChi pl d”; # chipid

DET. CHI P1. TYPE “myChi pType”; # chip type

DET. CHI P1. DATE “2005-08-03"; # chip installation date
DET. CHI P1. LI VE T; # chip live or broken

DET. CHI P1. PXSPACE 1. OE-06; # space between pixels (neters)
DET. CHI P1. PSZX 1.0; # size of pixel in x (m)
DET. CHI P1. PSZY 1.0; # size of pixel iny (m)
DET. CHI P1. | NDEX 1; # uni que nunber in nosaic
DET. CHI P1. X 1; # x location in nosaic

DET. CHI P1. Y 1; # y location in nosaic

DET. CHI P1. XGAP 0; # gap between chi ps along x
DET. CHI P1. YGAP 0; # gap between chips along y
DET. CHI P1. RGAP 0.0; # angl e of gap between chips
DET. CHI P1. QUTPUTS 32; # nunber of outputs

DET. CHI P1. NX 1024; # nunber of pixels along x
DET. CHI P1. NY 1024; # nunmber of pixels along y
DET. CHI P1. ADJUST " FREE"; # w ndow adj ust ment (CENTER| FREE)
DET. CHI P1. ADJUSTX 1; # adjustnment step in X

DET. CHI P1. ADJUSTY 1; # adjustnment step iny
DET. CHI P1. ACQ DX 0; # map to acquisition nodul e

CLDC nodul e setup
DET. CLDCL. FI LE
DET. CLDC2. FI LE

“test.v”;
“test.v”;

vol tage definition file
vol tage definition file

H* H#*

Sequencer nodul e setup

DET. SEQL. CLKFILE “test.clk”; # clock pattern file

DET. SEQL. TI MEFAC 2; # dwell time factor

DET. SEQL. CONT F; # conti nuous node

DET. SEQL. RUNCTRL T; # external run-contro

ADC nodul e setup

DET. ADCL. DELAY 0; # conversion strobe delay (ticks)
DET. ADC1. ENABLE 4; # nunber of enabled ADC units
DET. ADC1. OPMODE 0; # ADC oper ati on node

DET. ADCL. SI MMODE 0; # ADC sinul aton | eve

DET. ADCL. PKTSI ZE 2; # packet size

DET. ADC1. CONVERT1 T; # convert on strobe 1

DET. ADC1. CONVERT2 F; # convert on strobe 2

DET. READ. DEFAULT 2; # id of default readout node

Read-out node definitions

DET. READ1. NAME “Uncorr”;

DET. READ1. ACQL “ngcppSi npl el16”
DET. READL. ACQ2 “ngcppSi npl el16”
DET. READL. SEQL “test.seq”; # program for sequencer 1
DET. READ1. DSUP “*; # default paraneter setup
DET. READ1. DESC “uncorrel ated readout”

readout node nane
acquisition process on nodule 1
acquisition process on nodule 2

DET. READ2. NAME “ Doubl e”; # readout node nane
DET. READ2. ACQ2 “ngcppTenpl ate”; # acquisition process 2
DET. READ2. SEQL “test.seq”; # program for sequencer 1

DET. READ2. DSUP ““; # default paraneter setup
DET. READ2. DESC “doubl e correl ated readout”;

20 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

3.5.3 Directory Tree

Unless an absolute path is defined, all file locations are relative to the location of the file they are re-
ferred from. So the parent directory of the actually loaded system configuration file would become
the reference path for the referred detector configuration file and for the parameter default setup file
in the system configuration scope. The parent directory of the actually loaded detector configuration
file will become the reference path for the referred voltage setup files, for the clock pattern configu-
ration files, the sequencer programs and also for the parameter default setup files in the detector
configuration scope.

This scheme basically introduces one main entry point (the directory of the system configuration
file). All other paths are derived from there and so the directory tree is freely adaptable through the
filename entries themselves (i.e. “../SEQ/myProgram.seq”). The default search path for the system
configuration file is “$INS_ROOT/SYSTEM/COMMON/CONFIGFILES/”. The ngcircon server intro-
duces a default system configuration file (“NGCIRSW/ngc.cfg””), which is used in case nothing had
been specified via the *“-cfg” server command line option, whereas the ngcdcsEvh engineering serv-
er uses a built-in default configuration in this case (i.e. one main board + one acquisition module).

354 Configuration Modules

The configuration files and sequencer programs are stored in instrument- or detector-specific con-
figuration modules, which are under CMM configuration control. This also applies to maintenance
and test configurations. Usually the configuration files are part of the NGC-system delivery. In cases
where detector development is done outside, the respective instrumentation team is responsible for
the development of the configuration files. Templates and a graphical editing tool for the clock pat-
terns will be provided.

3.6 Simulation Mode

The default operation mode is the so-called “NORMAL” mode, where all physical devices are ac-
cessed. The default mode can be changed with the DET.CON.DFEMODE keyword in the system
configuration file. The value can be either “NORMAL” or “HW-SIM” or “LCU-SIM”. The keyword
is overwritten by the “-sim” server command line option, which would force the server to start in
the given simulation mode (HW or LCU) in any case. At server run-time the operation mode can be
changed with the commands “SIMULAT -function HW] LCU” and STOPSIM.

In HW-simulation mode the NGC hardware is simulated using the ngcbSIM simulator instances in
the interface devices. The acquisition process is then also started in data simulation mode. The data
timing (simulation interval) is set according to the current detector integration time (DIT). More re-
alistic timing simulation may be TBD. The simulation can be started on a single workstation by set-
ting the host names for the acquisition process(es) and for the interface devic(es) to the local host. In
this case the launch of the driver interface process can also be skipped by giving an empty string as
interface device host name. The interface would then be created as “local” interface.

The LCU-simulation mode additionally forces all processes to be started on the hosting workstation
(IWS).

The current operation mode is stored in the database attribute ‘<alias>ngcircon:system.opMode’.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 21

For software testing it is possible to emulate various errors:

= No acknowledge from hardware module (“no_ack™)
= Invalid address on a NGC hardware module (“ivld”)
= Seqguencer FIFO empty (“seq_empty”)

= Sequencer goes to IDLE state (“seq_idle™)

< 1/0 error on all communication links (“io_err1,2,3")
< 1/0 error on data link (“data_io)

= Error when writing data to a file (“data_file™)

= Server blocks forever (“block’)

Others may be added. The emulation can be done with the low-level maintenance command “NGC
simerr <identifier>"" (see 7.2.2). A specific command for this purpose and a more convenient identifi-
er assignment is TBD.

3.7 Parameter Setup

Parameters are sent via the command
“SETUP -function <namel> <valuel> [<name2> <value2>...]”

The order of the parameters within such a setup command is insignificant. The parameter names
typically start with “DET.”. The DET category may be indexed. The value of a parameter can be re-
trieved with the command

“STATUS -function <namel> <valuel> [<name2> <value2>...]”
The parameter values are returned as a list in the same order as given in the command:
<namel> <valuel>[, <name2> <value2>,...]

String values are enclosed in double quotes. The command may return intermediate replies when
the list becomes too long.

Additionally to the common system parameters, the data pre-processing and the sequencer pro-
gram may introduce an arbitrary number of application specific parameters. These parameters
have a meaning only in their limited context, but nevertheless they may have an impact on the
overall system, as they may require sequencer reloading or an acquisition process restart. In order
not to do those time consuming functions too often, their system influence needs to be described
somehow. To achieve this, the application specific parameters are stored in a parameter list, which
for each element carries some flags for specific actions to be performed, when the parameter value
changes (see [AD9]). The list also eases to keep an overview of all parameters in use (i.e. to visualize
and to set them in a graphical user interface). Range and validity checks are done by the control
server. Only after successful application of the parameter the value in the list will be updated ac-
cordingly. Now the problem arises how a certain parameter may enter this list:

Generally all parameters are described in one or more dictionaries (see [AD37]). Those dictionaries
will contain both the common system parameters and the application specific ones but define rather
all possible parameters, which may be set at some time, than those, which currently are really in use.
Nevertheless any parameter, which may enter our list, must be defined in a dictionary in order to

22 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

be visible to the outside world. The dictionary also defines, which of the parameters will be added to
the FITS-headers of the produced data files.

The parameters used by an acquisition process can be directly imported from the process itself (see
[AD9]). So the control server knows which process uses which parameters. The only thing to be
done here is to ensure, that the parameters of all acquisition processes used by a certain detector
configuration are declared in a dictionary. Nevertheless there may also be parameters, which are
only used within a sequencer program, but not in any acquisition process. In order to add them to
our list, they need to be declared with a default value in a parameter default setup file (.dsup). These
setup files may be defined within the scope of the system configuration, of the detector configura-
tion or of the read-out mode definition. This scope also defines a parameters “life time” in the list. A
parameter declared at detector configuration level will be removed or reset to (a possibly new) de-
fault, when a new detector configuration is loaded. A parameter declared at system configuration
level will be removed or reset to (a possibly new) default when a new system configuration is load-
ed. The command

“SETUP -default”
will apply all default values described in the parameter default setup files.

The dynamic parameter list is stored as a table (fields: name, value) in the database attribute
‘<alias>ngcircon:system.param’. It may also be retrieved by sending the STATUS command with
no parameter.

3.8 Server Extensions

Server extensions can be built by deriving from the ngcdcsEVH class (see appendix section 7.2.3).
Post-processing callbacks may be added as described in section 4.8. Hooks for special actions at
server state switching (before and after “online”, before and after “standby”, before and after “load-
ed”), when setting parameters and upon exposure events may be installed. The system- and detec-
tor-configuration file loading functions LoadSysCfg() and LoadDetCfg() can be overloaded to support
different file formats. The ConfigureCB() call-back function can be overloaded to install interfaces,
which are derived from the ngcblFC class and to configure parts of the system, which are not cov-
ered by the basic control server. Module creation hooks can be installed to create derived versions of
the sequencer-, CLDC-, and ADC-modules and also of the acquisition module (see [AD9]). The
modules are created when applying the system configuration with the Configure() method as de-
scribed in section 3.2. The modules are deleted with the Shutdown() method, which is always called
as first step in the Configure() method. The Shutdown() method provides two call-backs to shutdown
application specific stuff before and after internal shutdown is done. Calling Shutdown() a second
time in direct succession will always have no further effect.

3.9 Maintenance Mode

The maintenance service mode as described in [AD9] is also implemented in the ngcdcsEVH class, as
this derives from the ngcdcsSRYV class. The inheritance keeps a backwards compatibility for the test
macros developed for testing the prototype hardware. The low-level service commands can be
passed through via the NGC “cmd-string” command as defined in the command definition table
(see section 7.2.2). The internal command shell for these functions can also still be launched with the
-shell command line option. Once the control servers for infrared and optical applications are fully
operational, this maintenance service mode may be removed (TBD).

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 23

4 EXPOSURES

4.1 Read-Out Modes

The read-out modes, which are defined in the detector configuration file (see section 3.5.2), can be
selected at run-time with a setup command either by their name (DET.READ.CURNAME) or by
their “id” (DET.READ.CURID). The setup usually requires the sequencer(s) to be stopped, reloaded
and restarted, when the mode changes. The “stop if running” and “restart if it has been running before”
mechanism will be executed automatically where required and is transparent to the caller of the set-
up command. The mechanism may also be applied on other setup parameter changes, in case those
parameters are used in the sequencer program.

The available read-out modes are stored as a table (fields: name, id, desc) in the database attribute
‘<alias>ngcircon:mode.readModeList’. The current read-out mode is stored in the attribute
‘<alias>ngcircon:mode.readModeName/.readModeld’ (as integer reference id) and additionally in
the attribute ‘<alias>ngcircon:mode.readModeName/.readModeName’ (as string). A list of all avail-
able read-out modes can be retrieved with the command “STATUS -function DET.READ.AVAIL”.

4.2 Frame Types

The application specific acquisition processes may produce an arbitrary number of frame types.
Each frame type has two flags associated to define whether frames of that type will actually be pro-
duced by the pre-processor and whether frames of that type should be stored to disk during an ex-
posure. A software window can be defined individually for each type and for each acquisition
module using the FRAME command as described below.

Usually an exposure is finished, when the INT-frame has been received on the instrument worksta-
tion. As it is required by some read-out modes to store also other frames during one exposure, a
more general exposure break condition has to be applied: each frame generated by the acquisition
process and selected to be stored can have a counter, that indicates the number of frames of that
type, that must be stored during the exposure. The exposure is finished, when all of these frames
have reached their break condition. A break condition of zero means that frames of this type should
be stored on a “best effort” basis (i.e. “store as much as possible until the exposure is finished). If all
break conditions are set to zero, the exposure will run and store frames until it is aborted. All that
can be controlled via the command:

“FRAME [-module <acq.-module id>] -name <frame name> [-gen T | F] [-store T|F]
[-break <counter>] [-win sx sy nx ny]”

The frame setup can be done “per process” by specifying an acquisition module id. If the module id
is zero or if no module id is passed, the command will refer to “all”” modules.

The available frames are stored as a table (fields: name, generate, store, breakCond, sx, sy, nx, ny) for
each acquisition module in the data base attribute ‘<alias>ngcircon:acq_<i>.frame’. The frame list
can also be received with the command “STATUS -function DET.READ.FRAMES”.

4.3 Windows

The setup parameters DET.WIN.STRX, DET.WIN.STRY, DET.WIN.NX, DET.WIN.NY define the
format and position of the data-frame within the chip. DET.WIN.STRX/Y always refers to the lower
left corner. The sequencer module will derive its default read-out window (DET.SEQi.WIN.STRX/
Y, DET.SEQIL.WIN.NX/Y) from these parameters. For detector mosaics (DET.CHIPS > 1, see section

24 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

4.7) the window is by default intended to be applied “per chip”. Nevertheless both sequencer pro-
gram and the associated acquisition module(s) may use these parameters in an application specific
way to read-out detector overlapping windows. Whether and how a read-out window is applied
depends on the detector architecture. The acquisition process will always know, what it will get,
and will then setup the right DMA and sort the data properly.

The window used by the acquisition process is usually overtaken from the DET.SEQi.WIN parame-
ters of the sequencer, to which it is associated. When the read-out window changes, the sequencer
program is reloaded with the new window parameters and the acquisition process is restarted with
the *-nx, -ny’ command line options set accordingly. In some cases this rule might be impractical and
the window for the acquisition process needs to be set independently. The DET.ACQi.WIN.STRX/Y,
DET.ACQi.WIN.NX/Y parameters are introduced for this purpose. Changes in the DET.SEQi.WIN
parameters will always automatically change the corresponding DET.ACQi.WIN parameters of all
associated acquisition processes, but not vice-versa.

Window read-outs can be disabled via a parameter, which should be flagged in the default parame-
ter setup file for read-out modes which do not support a window read-out of the detector. The win-
dow setup parameters may automatically be adjusted following several detector specific rules
which are defined in the detector configuration:

The DET.CHIP.ADJUST parameter specifies the read-out window adjustment mode for the detec-
tor. Valid values are:

“ CENTER’ - window is autonmatically centered
“ FREE" - windowis only adjusted to nultiples of
t he DET. CHI P. STEPX, STEPY paraneters

The DET.CHIP.STEPX/Y parameters specify the adjustment step in x/y-direction for window read-
out. Adjustments are done in multiples of this value.

Multiple windows (i.e. regions of interest) can be read-out by applying a proper set of additional
window parameters within the scope of the sequencer program (see [AD9] for details). This mecha-
nism is fully application specific.

Software windows are applied on a per-frame basis (see section 4.2). In this case the data transfer

task just requests a window from the acquisition process. This is mainly used to save transfer and
storage overheads.

4.4 Burst Mode
In some cases it might be necessary to store larger amounts of raw data or to sample at a very high
frame-rate. If the frame rate is too high (> 200 Hz on most non-real-time UNIX platforms) the DMA-

interrupt latency becomes dominating and no more CPU-power is left for pre-processing. Two
kinds of “burst modes” are used to cover these two cases.

44.1 Raw Data Mode

The raw data mode is activated by sending the setup command
“SETUP -function DET.ACQi.BURST.NUM <num>"

If num is greater than zero, it indicates the number of [DET.ACQi.WIN.NX, DET.ACQi.WIN.NY]-di-

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 25

mension sample-frames to be stored in the burst buffer. If an exposure is started both sequencer
and acquisition are restarted (the DET.SEQi.CONT flag is ignored in that case) and the buffer is
filled until num sample-frames (16 bit short integer) are stored. At the end of the exposure an INT-
frame (containing only dummy data) is transferred. The transfer of the sample-frames starts imme-
diately and runs in parallel to the data recording. A 3 X 2 MBytes input ring-buffer is used to ensure
interrupt stability. This means that at least 2 MBytes of data have to be created to fill the DMA. The
setup parameter DET.ACQIi.BURST.SKIP indicates the number of frames to be skipped before
starting to transfer.

This mode can be activated regardless of the currently selected read-out mode. Setting
DET.ACQIi.BURST.NUM to zero deactivates the burst-mode and restores the defined acquisition
process for the current read-out mode. The default burst-process (ngcppBurst) applying the de-
scribed mechanism may be changed by specifying a user-defined burst-process
(DET.ACQIi.BURST.PROC).

442 Internal Burst Mode

The internal burst is activated by sending the setup command
“SETUP -function DET.ACQi.BURST.NUM <-num>"

The negative value indicates that an internal burst-buffer should be applied. In this case the DMA is
enlarged by a factor of num. The data processing is not affected in this case as soft-interrupts are
created for each sub-division. The calculation thread will wait for num buffers and will then process
them within one step. This helps to workaround the 200 Hz interrupt limitation, but depending on
the actual processing it may slow down the acquisition performance as a whole (if for example
least-square fit or standard deviation have to be solved within the num buffers).

Also in this case a value of zero for DET.ACQi.BURST.NUM deactivates the burst-mode.

45 File Formats

There are several FITS file formats supported to cover various situations. The simplest case is, that
all frames produced during one exposure are stored into individual files (DET.FRAM.FORMAT =
“single”). This is mainly used for detector tests in the laboratory to have a fast and simple quick-
look to the generated data files. In case many intermediate results are produced, the FITS-header
creation for each individual frame may introduce large overheads in both transfer time and needed
disk space. To overcome this, the frames may be stored into data-cubes (DET.FRAM.FORMAT =
“cube). One cube would be created per frame type. This is especially needed for storing data in
burst mode, where usually only very small windows are read out. To store several thousands of
those small windows in binary image extensions or even single files would imply an enormous
overhead.

The standard file format would be to store the frames produced during one exposure into binary
image extensions (DET.FRAM.FORMAT = “extension”). If the data are coming from different pro-
cesses, they will normally be available all at the same time. When storing to different files (i.e. one
FITS-file per acquisition process containing all frames delivered by this process), all transfer can be
done in parallel and the transfer processes need not to wait for each other before saving data to disk
(DET.FRAM.MULTFILE = “T”). In the right configuration this would improve the transfer perfor-
mance considerably. Nevertheless, when transfer performance is not the limiting factor, the storage
mechanism is configurable to have only one binary image extension file per exposure
(DET.FRAM.MULTFILE = “F”). A default value for this can be defined in the controller electronics

26 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

system configuration file. It must also be considered, that when storing data from different acquisi-
tion processes into the same file, then the order of the individual image extensions is undefined! In
any case each image extension contains a unique identifier in the extension header.

In case of very long integrations it might be required to inspect some intermediate data and to check
them for consistency while the exposure is still running in order to avoid loosing telescope time,
when something went wrong. In such cases the “extension” format is not practical as the data on
disk can first be accessed when the exposure has finished. The “single” file format may be chosen to
allow such intermediate quick-looks. This may require some FILE-merging to be done by higher lev-
el SW (OS) before passing the data to the archive.

The information which system parameters (if used in the actual context - see section 3.7) will appear
in the FITS header is defined in the dictionaries [AD37].

4.6 Data File Naming

Three different naming schemes are available for the files being produced during an exposure. Un-
less an absolute path name is specified in the (base-)name all files will be stored by default in the
data-path $INS_ROOT/$INS_USER/DETDATA. The user’s access rights for the data-path are
checked before the exposure is started.

The naming scheme is set by the DET.FRAM.NAMING keyword. The keyword can be set either via
SETUP command or in the system configuration file. The value is one of “request” or *““sequence” or
“auto’:

1. Request Naming: The name must be specified before each exposure is started. The name
is given in with the SETUP command (parameter “DET.FRAM.FILENAME <name>").
The file will be named in the following way:

<name>[_<frame- nane>] [_<frame- nunber>].fits

2. Sequence Naming: An index is added to a base name. The index is incremented after each
exposure. Setting the base name is done with the SETUP command (parameter
“DET.FRAM.FILENAME <name>"). The index can be set with the “DET.FRAM.SEQIDX
<no>"" parameter. The FITS-file will be named in the following way:

<nane><sed- i ndex>[_<frane- name>] [_<frame- nunber>] .fits

3. Auto Naming: An index is added to a base name. When a new base name is set (or the
naming scheme changes) a start index is determined automatically by searching the data
target directory for files starting with the base-name. Initially (i.e. when DET.FRAM.SE-
QIDX is set to zero) the returned index is the highest existing index plus one. If
DET.FRAM.SEQIDX is larger than zero the returned index is the first not existing index
which is larger than DET.FRAM.SEQIDX. Once the index is determined it is increment-
ed by one (without further check) after each exposure until either the base-name or the
naming scheme changes or a new (minimum-)sequence number is explicitly set via a set-
up command. This makes it necessary that if DET.FRAM.SEQIDX is set to a value larger
than zero, then no file with the current base-name and an index larger than
DET.FRAM.SEQIDX must exist in the data target directory.

The frame name and frame number are only added to the filename in case individual files are gener-
ated for each frame (“single” file format).

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 27

4.7 Detector Mosaics

Detector mosaics can be handled in various ways. When being all of the same type and when fitting
into the computing resources of a single NGC workstation, just the chip dimension (DET.CHIP.NX/
NY) in the detector configuration file may be enlarged and the chips can be mapped into a single
image (virtual chip) with an appropriate sorting map. It is possible to split them up again into im-
age extensions when storing the data to disk and use the full image only for the real-time display.
The DET.CHIP.SPLITX/Y keywords define how many chips are mapped in the full image in x- and
y-direction.

Otherwise the DET.CHIPS keyword can be set to <N> to give the number of chips (or also virtual
chips in the above sense). This will automatically set the -ndet option of the acquisition process to a
value of N/<number of launched acquisition processes>. Each acquisition process will thereby be in-
structed to produce a [NX x (NY x ndet)] data frame containing the ndet images in consecutive or-
der. The associated acquisition module in the control server would split the frame again into ndet
separate images and would store them either to individual files or to binary image extensions of a
single file. The chip parameters (position in the mosaic, “chip alive”, etc.) as given in the detector
configuration file (see section 3.5.2) are stored in the FITS-(extension) headers. If multiple files are
generated, a DET<n> extension will be added to the filename:

<name>_DET<n>[_<frane- name>] [_<franme- nunber>].fits

The index <n> gives the index of the first detector stored in this file.

4.8 Post-Processing

Usually post-processing is not in the scope of the detector control software and should be done by
higher level SW (data pipeline), especially when FITS information from other sub-systems (TCS,
ICS) is needed for proper evaluation. Nevertheless it might be at least convenient to apply some op-
erations before storing the data to disk. Such operations might be image rotation or the evaluation
of some data in order to put the result into the FITS-header. As this has a fully application specific
nature, it is intended to be done in a post-processing callback, which is executed every time before a
frame is stored to disk. If the call-back procedure generates the data file by itself it has to inform the
server, that no more operation should be done with this frame. This information can be passed in
the return value (ngchSKIP) of the call-back procedure. Some applications also require that this
post-processing is done within an infinite loop (i.e. outside the data taking phase during an expo-
sure). A typical example for this are slow control loops with low real-time requirements like secon-
dary autoguiding. The sustained transfer (plus post-processing) is enabled/disabled via a transfer-
enable flag (DET.ACQi.TRANSFER T/F).

4.9 Exposure Control

Exposures are started using the START command. The server will perform a snapshot of all rele-
vant parameters to be added to the FITS header(s) of the produced data file(s). Normally, when an
exposure is started both sequencer and acquisition are restarted. It is also possible to let the se-
quencer run continuously, when a START-command is issued. This is controlled via the SETUP
keyword “DET.SEQi.CONT T]F”. A default value for this can be given in the detector configura-
tion file. In continuous mode just the acquisition process resets its buffers and counters and starts
building a new sum. The counter reset is required to avoid that corrupted data is used for comput-
ing the result frames, like if for instance the telescope was moved and frames where taken during
the movement. As the exposure start command is sent asynchronously in this case, the current inte-
gration needs to be skipped. In the worst case this introduces an overhead equal to the detector in-
tegration time. To avoid this overhead the acquisition module can also be set to a “continuous mode”

28 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

with the SETUP keyword “DET.ACQIi.CONT T|]F”. In continuous mode the counter-reset is dis-
abled and it is up to the initiator of the exposure start command to ensure, that there was no change
in the field of view since the last integration start. A timed exposure start can be done using the com-
mand

START -at <hh.mm ss[. uuuu] >

which defines an absolute start time (UTC). Until the actual start time is reached, the exposure status
is set to “pending”, which will limit the set of accepted commands during that time.

It is possible to synchronize exposures on multiple NGCIRSW instances via the external trigger in-
put of the sequencer hardware module (see [AD?9]).

If several sequencers are installed in the same system (i.e. the same instance of NGCIRSW), then the
exposures can be synchronized by using the global run-signal, which is raised by one sequencer in-
stance and is propagated to all other sequencer instances having the external run-control enabled
(DET.SEQIi.RUNCTRL =T in the detector configuration file). If one of the sequencers is not operat-
ing in continuous mode (i.e. it is stopped and restarted as exposure start), then the DET.SEQi.CONT
keyword is ignored for all other synchronous sequencers.

When the exposure has started, the exposure status will be “integrating”. When the header of the
last file has been received by the data transfer task (i.e. the break-conditions for all frames have been
reached) the exposure status goes to “transferring”. At this time all detector-data for the current ex-
posure are taken and it would be possible to change the field of view (e.g. move the telescope).
When the last file has been stored on disk, the exposure state goes to “success”. If an error occurred
during the exposure, the status goes to “failure”. If the exposure was aborted, the status goes to
“aborted”. The exposure status is stored in the database attribute ‘<alias>ngcircon:exposure.expSta-
tus’. It can take the following values:

1 - | NACTI VE
2 - PENDI NG
4 - | NTERGRATI NG

64 - TRANSFERRI NG

128 - SUCCESS (conpl eted_
256 - FAILURE (conpl et ed)
512 - ABORTED (conpl et ed)

An explicit status value (in ASCII string format) is stored in the database attribute ‘<alias>ngcir-
con:exposure.expStatusName’.

Whenever a new data file is created, the full path name is written to the database attribute
‘<alias>ngcircon:exposure.newDataFileName’.

The exposure can be aborted using the ABORT-command. In this case no data file is generated un-
less a frame was already received on the WS at the time when the command was issued.

The END-command makes the acquisition process terminate the exposure as soon as possible. In
this case the generated data file may contain just an intermediate result.

The WAIT-command can be used to wait for an exposure to complete. A reply message with the
current exposure state is sent immediately. When the exposure status is (or becomes) “completed”
(i.e. “success”, “failure” or “aborted”), the server sends the last reply, which again contains the actu-
al exposure state.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 29

410 Timing Accuracy

The control server will provide timestamps for exposure start and for all received frames with an
accuracy of - at least - 0.1 seconds. The accuracy depends mainly on the operating system gitters. If
a high accuracy is needed the detector readout can be triggered via the VLT TIM.

4.11 Chopping Mode

Synchronization of detector read-out with a chopper is done via the external trigger input of the se-
quencer (see [AD9]). If no chopper signal is available for this purpose, then the synchronization is
done via the VLT TIM, which has to start a pulse generation at same start time and with same fre-
guency as the chopper (see Figure 4). The chopping frequency has to be rounded to two digits in
this case. The NGC hardware will take care, that the sequence always starts in the same phase (e.g.
always “on object”). A maximum value for the chopping frequency is computed within the sequenc-
er program and is stored in the setup parameter DET.CHOP.FREQ (Hz). This can either be re-
trieved via the STATUS-command or also via the database entry ‘<alias>ngcircon:chopper.freq’.
Chopping mode is enabled/disabled by the setup parameter DET.CHOP.ST (T/F). The chopper
transition time is passed to the sequencer program via the setup parameter DET.CHOP.TRANSTIM
(seconds). The DET.CHOP.ST parameter is also passed to the respective acquisition process, which
will then take care of computing the subtracted images.

The computation of the result image (object - sky) is application specific. Usually the parameters
DET.CHOP.NCYCLES and DET.CHOP.CYCSKIP define the number of chopping cycles and the
number of cycles to skip after start, and DET.IR.NDIT + DET.IR.NDITSKIP integrations will be
done on each chopping half cycle. The DET.IR.NDITSKIP integrations are skipped at the beginning
of each half cycle. Optionally the data for the chopping half cycles can also be computed (controlled
via the FRAME-command - see section 4.2). However - these parameters are application specific
and may not be valid in all cases. If applicable they will be available either via the STATUS-com-
mand or via the parameter table in the database attribute ‘<alias>ngcircon:system.param’.

Start-Time, Frequency— 5| Chopper

Start-Time, Frequency— s V/LT-TIM

Trigger

NGC-Sequencer I

Transition-Time
Detector Integration Time
Chopping Parameters: —

DET.IR.NDIT,
DET.IR.NDITSKIP,
DET.CHOP.NCYCLES,
DET.CHOP.CYCSKIP, ...

NGCIRSW

Figure 4 Chopping Mode

30 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 31

5 GRAPHICAL USER INTERFACE

The graphical user interface (GUI) is created with the VLTSW panel editor [RD39]. Commands are
sent from the GUI to the control server via the CCS message system. All status data is read back via
the database. The panel reacts automatically on database events (i.e. when an attribute in the data-
base changes). Several panels can run in parallel to control different instances of the control server.
An instance number can be passed to the GUI via the “-inst” command line option. The database
branch and the server name, with which the control server is registered in the environment, is de-
rived from this number. A startup script can be used to start both the GUI and the server with the
proper instance number.

A new system configuration and a new detector configuration can be loaded via the panel menu
bar. There one can also switch between normal mode and simulation mode and issue all commands for
server state switching (see 3.2). It is possible to restart the control server from the GUI. The read-out
modes, as defined in the detector configuration, can be selected via a global option button.

5.1 User Interface Classes

The hardware modules (sequencer, CLDC, ADC) and the acquisition modules are represented as
instances of UIF classes. There is one UIF class instance per hardware module. The instances can be
selected with option buttons outside the class widget. Some commands refer to “all” instances
(“start all sequencers”, “enable all CLDC modules™) and require a button outside the class widgets.

The panel contains a UIF class for the overall exposure setup, where one can select the naming
scheme and the file format, set the exposure filename and issue all exposure control commands by
pressing buttons (START, ABORT, END). The produced frames are displayed in a file history wid-
get. It is possible to show also the FITS header of the produced FITS-files by double clicking on the
file names.

Exposure: Startl Abortl End | Maming Scheme: reguest —-| Resetl
Mame : | | nge |
Format: extension _.| I File-History @l Status success |
_| Multiple Files ngc. Fits

[Extended Header

Exposure Time | 00:00:00
Countdown (-00:00:05 =

Figure 5 Exposure UIF Class

T,

The CLDC UIF class provides a voltage tune bar to tune a selected clock- or bias-voltage within the
defined range. The ranges are read from the database. The actual voltages can be saved to a voltage
configuration file. New voltage configuration files can be loaded by typing the file name into an en-
try-widget or via a file browser. Voltage telemetry is shown in a global result widget when pressing
the telemetry button.

32 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

; CLDC-1
CLDC 1-1 VD|’EB.QE—FI|E| Itegmei./ult/’ngu:/ngu:du:s/’u:u:unFigx’testi+u —_.l
Status| enabled | ¢ g | Disable| Telernetry | ‘oltages coc |

Bias | DC1-YOD = Save

3,3000 4'
[o Disable Al
3, 0000 32,7000 4'

Set: | 3.300 Telemetry :
Monitor-1 : I_ Monitor-2 : I_

Figure 6 CLDC UIF Class

Festore | Restore All

The sequencer UIF class provides all means to setup and control one sequencer instance. Clock pat-
tern configuration files and sequencer programs can be loaded by typing the file name into entry-
widgets or via a file browser. The class also contains the entry widget for the detector integration
time, which can be set individually for each sequencer in the system.

Sequencer 1 Startl Stop | Breakl I Continuous Mode Ml

Status W Read-out Window — 1Migger vode Sync-Start |
Time Factor : | 2 SX: | 1 NX: | 1024
Stop Al |

Timeadd: | |1 | sv:| | 1wy |1024 |
CIuck—FiIel |/ istegmeis/vlt/ngo/nzodos/config/test. clk Ml
Program | | istegmeis/vlt/nge/ngcdos/config test, seq
DIT: | © 5.0000000 | (s) M Run-Ctri

Figure 7 Sequencer UIF Class

The ADC UIF class provides all means to setup and control one instance of an ADC module:

ADC Hodule 2 units : [ADC-2 |

Offset (V)

Delay : | III Mode : Normal —-l | 2.000
PKt-Size : | Sim: Numbers — | Monitor-1: [1 |
Pkt-Cnt ; | |I| I Cyt1 1 Cytz Monitor-2 : I_

Figure 8 ADC UIF Class

Via the acquisition UIF class a new acquisition process can be launched (usually this will happen au-
tomatically when selecting the read-out mode):

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 33

Acquisition 1 _I Confinuous hode _ACG-T — _'l

Status W i Transfer I Performance honitor
Burst : | | 0 | Start | re :
i L‘MI—U i
Skip : | 0 Stupl
Process Statistics
|ngcppTemplate 4|

SX: | 1 NX: | 1024
SY: | 1 MY : | 1024

Figure 9 Acquisition Process UIF Class

The window for the acquisition process is usually taken over from the sequencer module class
(read-out window). But it is also possible to set it manually (mainly used for test purposes).

The performance monitor in the acquisition UIF Class shows the pre-processing CPU load on the
NGC-LCU, where the current process is launched.

All of the hardware- and acquisition-module classes show the actual status (“‘sequencer running”,
“CLDC enabled”, “acquisition process running”, “ADC enabled”).

5.2 Notebook Area

There is a notebook area where one can select additional UIF classes. By default there is one for the
parameter setup, one for the frame setup and one for the action history. It is possible to add applica-
tion specific control widgets in that area (chopper interface, etc.).

The parameter setup widget shows the list of application specific parameters as described in section
3.5.4. There is a “Default” button, which will set all parameters to the values given in the parameter
default setup files. The default setup files are applied in the order: system configuration default set-
up, detector configuration default setup, read-out mode default setup, where the last loaded setup
has precedence.

31 PARAM \ FRAME | HISTORY |

DET .NC . MYPARAML] A Defaul
DET .NC . HYPARAM2 1.5 i“tl
DET .NDIT 10

DET.SE(Q] .DIT 5. 0000000

DET . SEQL . EXPTIME 0.0

DET . SEQL . MINDIT 0. 0000000
DET.SEQ2.DIT 5. 0000000 P

=l =

Figure 10 Parameter Notebook

34 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

In the frame notebook one can select the frames to be generated and the ones to be stored during the
next exposure. The exposure break condition and a software window can be set for each defined
frame type. The frame setup can be done either individually per acquisition module or globally for
all acquisition modules.

7\ PARAM' FRAME HISTORY |

NAME G 5 BREAK WINDOW Acquisition Module
DIT 10 o[1, 1, 1024, 1024] [
INT 11 1] 1, 1, 1024, 1024] All —'l
MYFRAME 10 1] [bd, 256, 956
| MYFRAME |
¥
] = W Generate _I Store

SX;I [64 | NX;I I%I Full Framel Break : | 0

Figure 11 Frame Setup Notebook

The history notebook logs all major actions (server restart etc.) which are done via the panel.

i\ PARAM\ FRAME HISTORY |

I Enable Action Histary Clear |

rgogui: command to ngodosEvk "FRAME" "-module © -name MYFRAME -win B4 B4 2GE 2GE", ..
ngoguit command to ngodosEvh “FRAME" “-module O -name DIT -win 1 1 1024 1024°, .,
ngoguit command to ngodosEvh “FRAME" “-module O -name IMT -win 1 1 1024 1024°, .,
ngogui: command to ngodosEwk “STATUS" "-function DET,CLDCL,DCT1",..

nacguit command to ngodosEvh “START" "“...

ngcgui: command to ngodosEwk "SETUP" "—function DET,ADCZ,0OFFSETL 2,.0",..

L L —

Figure 12 Action History Notebook

35

VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5

_ duing _ JIea|n

_ 1953y _ vogy

Joyu

/ SWT] MOTIEASSUT S O000000"E =
ST MOTIEAESIUT S OO00000TS =

RUEUOTIOTP SII0O9H ¢ 02 T-52009K°J10-Lh-053. =
11 snzodea anbiun ¢ o = 01 d¥3 130 053 HIWWH3IIH

SWT] WOTIEAL] STT4 /L £995°GPI0TIOTIET-20-4008, = LN WHYd 130 053 HIWWYIIH
23Ep BuTAdEEqD ¢ L TI98°SPI0OTIOTLET-20-2002, =5E0-3LH0

LIN 2035 L30 053 HIdW43IH
LIT 7035 L30 053 HIAW43IH
II0 1301 053 HIYEE3TH

FTEE"GFIOTIOTLIET-20-2002 / STEFTFL9 0GTFS = 540-100H

awep A[T4 [RUTETJ] / ,=3T4706U, =30149140

ATy UOTIEIGAIUT 7 O000000 5 = 3WILdH3

ue33Llam =em 8714 8y} 238 / L9926 05I0TI9TLIET-20-L002, = 3160
FAoEsdasq) UJsYInog ueadoany o 053. = HWI9IH0

uoTsUaxy S | = IN3LKT

FEdJE BEQ UT SSXE 40 & /0 = SI¥HH

anfen x1d Jad =319 Jo ¢ /8 = KIdLIT

5114 PdepuEls | = J1dMIS

Rl e3ep ou T MdH

TSI 06U/ IBTLITAWALSAS, DAL I/ auBayel ooy,

| : puewiwoy

| 2 AN T | = a8
| 2 %M T | :xs

|_ pZ-dopuol 230 T L1AD oW _H_ _ DD -1Hd
|+ 1-aopuon _ — Si3gWNp : ue E | : sz1g —Pid
E _ g : apop _H_ _ : Aejag

= zoav_ (oo —|zswa ¢ STRPOR >0%
Hio-uny (s)| ooooooo-s [-1a

bas 'uwmu\wHucou\wu_oum_._\uwc\#.ﬁ3\._meMpm.ﬂ._ _ Em._mo._n_

HT2 'uwmu_wHmcou\wu_oum_._\uwc\.u.ﬂ3\HmeMﬂm.ﬂ._ a|l4—¥20|5

[vzot] [zam | 1 | | : a8

[vzot] [xm [1 | | : xs
apopy JaBBu AMOPULN N0 -pesy

apojy SnonupuoD _v_mm_m_ _ doig _ uels

_ II¥ Headg

|1 doig

_ Hels—ouhs
_ — l-933

= Py 2w

I _ HEL R

1 aaousnbeg

_ : Z-A01U0K I _ L -A0p DK

_ I 210153y _ aioisay

_ ZEE £ |: Anawajpy DOE"€E | :10s
ajeTdwa | dda3u o +
000L°E folololo R
sonsne
Rspels ££3204d I 3|gesi — [
_ doig o | :doig _‘ 000E"E
free [o | |z ¥sung | anes = aga-1oa [~ ceim
04| SOUBLLIONSY =l igisuel] - [bupuuma | snelg | 201 | sebeyos, | AnawajeL |oigesia | [2072 | porqeus |smEg
. 3 Bl oE = Z
— —oov 2pols snonupuos T uorjrstnboy — 1oogTo At 13235 B THUDD /20P2EU 05U 3T A/ TEW mp_ 3|l 4—abeyos, I-1 2aT0
[| | 50:00: 00| Umopiunog
= 7
3w ainsodx3
“1' poooooo-s 1I0g0ds " 130
e e speoppanian
0000000° § LI THAS " 130 =a14°26u sa|l4 aduniy
ot LION" 130 _ _
ST ZATYANN N LT | sseoons |smmis |U¥310 AcisiH-31d [~ uoiSUske :jeulo
_ neja
aneRa L 0 DAY IRN ON" 130 [oBu _ | awep
/>¢D._.m__._ /m_E,qmn_ /E,qmqn_ ,,,m _pmmmm _ — 3sanbal awayos Aulen _ pug _ton,q _ 1els adnsodxg

ajgnag apop-peay _ 1523

| uoneanByuog ao1vmag

| _wmisum pon | @TPT || HENITINO |

aunug apopy a4

SIpME — |[Bued [03U0D DN

ineering GUI

Figure 13 Eng

VLT-SPE-ESO-13660-3837

36 NGC Infrared DCS Design - 2.5

Server Preferences and System Configuration

7

GUI'| SERVER |, SYSTEM |,

5.3

Verbose Level : |2 Log Lewvel : IO
User Level Exper‘t p—1 I

Apply | Dismissl Save I

Figure 14 GUI Preferences

= eweterences |

GUI Y SERVER Y} SYSTEM |,

Control Server : |nzcdosEvh

Verbose Level : |2 Log Lewvel : IO Instance : I

Database : |<alias>ngcdcs
I Auto-Cnline

1 Start Processes in MNew Window
I Auto—Start

I Launch Command Shell

System Configuration File
Browsel

|/h0me/.jstegmei/ult/ngc/ngcdcs/conf—‘ig/SHSZ. cfg

Apply Dismiss

Figure 15 Server Preferences

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

=
File Help

G Y SERVER ' S¥STENM \

System Configuration File

|,.|'h|:me,,fj stegmel/v1t/mge/ngodes/ configy sys2. cfg | Load Save
Default Detector Configuration File
|test.dcE 1 Auto—Online
Operation Mode Maming Scheme File Format I Auto-Start
Hbi' =51 —-| request —-| extension —-| I Extended Header _1 Status Polling
1 Multiple File Number of Blocks : |16

Device \Sequencer\ cLDC Y, ADC | Acquisition ',

Device Hame : I/deu/ngco_com

Environment : [$RTAPERY MNumber of Devices : |

Host : |$HOST

Configure Device

Server Name : | {optional) 1 |
Type : I (optional)

Figure 16 System Configuration Tool

37

38 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

6 TRACEABILITY MATRIX

6.1 NGC Requirements from [AD6]

39

[tem Requirement Section

3.7 Software

1 Generally, software shall not limit the performance of the hard- 2.1
ware.

2 It shall be command driven. 21,22
3.7.1 High-level operating systems

3 The high-level operating systems must be [compliant with the 2.1
VLT requirements. However, their number and diversity shall be
kept to the minimum necessary for NGC.

4 A careful attempt shall be made to define an interface layer [AD9]
between the NGC control software proper and the operating sys-
tem(s) and so to enable porting of al software above this layer at
reasonable cost.
3.7.2 Configuration Control

5 At all times, all software and all parameter files shall be kept 23,354
under configuration control.

6 For critical parameter files, an additional mechanism to ensure TBD
their integrity (e.g., check sums) should be considered
3.7.3 Programming

7 The usage of modern code-generating tools with a view towards TBD
testing, documenting, and debugging is encouraged. Their selec-
tion should be coordinated with the Technical Division. Island
solutions should be avoided.

40 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
[tem Requirement Section

8 For each module, code and documentation shall be designed such -
that it can be maintained without analyzing other modules.
3.7.4 Installation and start-up procedures

9 Fully automatic installation procedures and versatile configura- 23,351,352
tion tools shall be provided.

10 Execution of the standard control software in the telescope envi- 2.2
ronment shall not require any special user privilegesto be granted
by the operating system.

11 The start-up script shall not require more than 10 sfor auto-recog- No further overhead
nition of the hardware and the ready-for-use initialization of hard- here.
and software.
3.7.5 Resour ce checking

12 Software shall be able, prior to each exposure, to check the availa- 4.6
bility of all critical resources.
3.7.6 Elementary functions

13 The set of elementary functions shall comprise those of IRACE 7.2.2
and FIERA.

14 The addition of further functions shall be possible without affect- 3.8, [AD9]
ing the others.
3.7.7 Tests

15 Test software shall be developed in parallel to the control software 2.4, [AD9]
itself.

16 The emulation of failures of other utilities (software, hardware, 3.4, 3.6, [AD9]

network, lack of resources, access denial) should be considered.

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

41

[tem

Requirement

Section

17

Standardized tests of the software corresponding to any supported
hardware configuration shall be possible by merely selecting a
single set of parameters.

18

A sequence of tests of several hardware configurations shall be
possible without operator intervention.

19

Means should be considered to let NGC keep track of the fre-
guency of usage of its key functionalities as away to set usage-
oriented test priorities.

TBD

3.7.8 Times and timings

20

Without the VLT TIM, all absolute times shall be correct to within
lessthan 0.1s.

49

21

Relative synchronizations and time interval s shall be accurate to
better than 0.1% or, for intervals less than 10s, to better than
0.01s.

22

Stricter timing requirements shall be realized using TIM.

49

3.7.9 Special modes

23

Support of the following techniques (in the order of decreasing
priority) should be foreseen:

« nod and shuffle

= subpixel sampling and digital filtering so that during
an exposure the built-up of the S/N can be followed
by performing a regression analysis for each pixel

= drift scanning
« non-destructive readout

= on-chip charge shifts by a user-definable amount (e.g.,
for through-focus sequences)

[AD9]

24

Device type-specific modes offered by state-of-the-art IR detec-
tors shall be included.

[AD9]

42

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

[tem

Requirement

Section

25

If centroiding functions need to be supported, this shall be possi-
bleat aframerate of 1 Hz for dataarrays of up to 256 x 256 pixels
using asingle Gaussian fit or similar. For much smaller data
arrays, rates of up to 100 Hz should be possible.

[AD9]

3.7.10 Consecutive exposures

26

If, e.g. dueto on-line data processing, the time between end of
detector readout and availability of the FITS file on disk becomes
asignificant overhead, it shall be possible to configure the soft-
ware such that the next exposure begins right after the previous
readout.

49

3.7.11 Windowing and on-chip binning

27

Standard windowing and on-chip binning shall be provided

42,43

28

The number of windows should only belimited by the capabilities
of the detectors.

4.2,4.3

3.7.12 Pixel processor

29

A pixel processor shall be embedded in the system. Its interfaces
to the remainder of the system shall be designed such that a
replacement of the hardware plus operating system and/or of the
processing software can be fully transparent to all other subsys-
tems.

2.1,2.2,[AD9]

30

The following operations shall be supported from the beginning:
averaging of frames with and without removal of outliers (e.g.,
particle events)

= bias subtraction
= centroiding of point sources
 TBC

(If performance reasons so require, the implementation may be
detector dependent.)

[ADY]

31

Close integration with NGC of a general-purpose image process-
ing system featuring a user friendly scripting language could be
considered.

[AD9]

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

43

[tem

Requirement

Section

32

More desirable is an interface to the ESO DFS and the inclusion
of general-purpose algorithms and recipesin the DFS CPL for re-
use by data reduction pipelines.

21

3.7.13 ALMA control software

33

If thisisin the general interest of ESO and supported by the Tech-
nology Division, elements of the ALMA control software may be
used.

TBD

3.7.14 Special utilities

For multi-port systems, bias equalization to within better than 1%
shall be possible on demand but without any further operator
supervision.

Not for IR.

3.8 External interfaces

35

Ideally, external interfaces (e.g., commands, databases) presently
maintained by IRACE and FIERA would be supported by NGC
with aminimum of changes so as to make the integration of NGC
with the ESO operations scheme as seamless as possible. How-
ever, sincein thisregard the commonalities of FIERA and IRACE
are very limited, this also limits backward compatibility.

In no case shall NGC feature two different types of interfaces for
the same purpose.

TBD

3.8.1 Data for mat

36

The dataformat shall be compliant with the Data Interface Con-
trol Document.

45

37

Comprehensive detector and electronics telemetry shall be
included in the data headers.

45,49

38

From the FITS headers, it shall be possible to uniquely infer the
complete set of hard- and software configuration and all parame-
ter values.

4.9

44 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
[tem Requirement Section
39 A generalized, moderately configurable interface to real-time Not within this scope.
computers, e.g. for adaptive optics or fringe tracking applications,
shall be defined (in cooperation with ESO software engineers
working downstream from such an interface).
40 It could be advantageous that (a possibly specia incarnation of) TBD
the pixel processor can serve as the real-time computer (or vice
Versa).
41 Latency shall not exceed 100 us. Not within this scope.
3.8.3 Real-time display
42 An interface to the RTD shall be provided. 21
43 For high framerates, it shall be possible to request only every nth [AD9]
frame to be displayed.
44 Adaptive auto-selection shall be supported. [AD9]
3.8.4 VLT telescope control system
45 It shall be possible to synchronize detector operations with the [AD9]
following functions:
= Telescope nodding
= M2 chopping
= Non-sidereal tracking
3.85 VLT timedistribution system
46 The possibility of an interface to the VLT Time Interface Module [AD9]
shall be foreseen.
47 - Reserved.
52
3.11 Diagnostic tools

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

45

[tem

Requirement

Section

3.11.1 Hardwar e self-test

53

The hardware shall be ableto execute acomprehensive self-test. It
shall be possibleto start it by pressing a physical button aswell as
by software. Due consideration shall be given to the protection of
the detectors. The execution shall not exceed 5 minutes. An auto-
matic log shall be produced.

TBD

In order to save space on the electronics boards, it is acceptable to
let remote software (e.g., on the XL CU) execute these tests with
hardware only reporting its status. This software shall be devel-
oped in parallel to the one of the hardware.

TBD

3.11.2 Read-back of parameter values

55

It shall be possibleto read back the actual values of all parameters
set by software.

354

3.11.3 Automatic identification of hardware components

56

All LRUs (line Replaceable Unit) shall have a unique identifica-
tion that is readable by software.

3.2, [AD9]

57

An extension also to detectors shall be considered.

TBD

58

Software shall be able to use thisinformation for auto-configura-
tion.

3.2,3.5.1, [AD9]

3.11.4 Error handling

59

Meaningful error messages and log files are essential; they shall
enable software staff not familiar with the software or its scope to
identify and fix minor problems. Different severity levels shall be
distinguished. The status and options for the next actions shall be
clear at all times.

33,34

60

It shall be possible to set the severity level up to which automatic
recoveries from errors shall be attempted.

TBD

46

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

[tem

Requirement

Section

61

After afailed data saving, the OS shall have the possibility to
recover the last frame.

Not applicable for IR
exposures.

62

After an interruption in the power supply, software should be able
to automatically restore the status at the beginning of the last suc-
cessful exposure.

Not possible.

3.12 Support of engineering work

3.12.1 Engineering mode

63

There shall be a password-protectable engineering mode. It may
contain extra modules and options while otherwise may be omit-
ted for reasons of convenience. However, modules used for nor-
mal operations shall be identical.

3.9, [AD9]

This mode shall offer accessto all essential elementary detector
control functions and allow hardware engineers rapid proto-typ-
ing of experimental software.

3.9, [ADY]

3.12.2 Change of parameters

65

A change of software-configurable parameters shall not require a
re-start of the system and, where possible, be supported al so dur-
ing readout. Thiswould also benefit multi-mode instruments
where, e.g., imaging and spectroscopy require different parameter
setsfor optimal performance. Switching between modes shall not
lead to any hysteresis.

3.5.4, 4.1, [AD9]

66

A mechanism shall be implemented to reduce the risk of out-of-
range parameter values being set accidentally that could damage
the connected detector(s). One possibility might be to let the con-
troller hardware request a unique electronic ID (such asthe serial
number) from the detector.

TBD

67

Aninterface to BOB shall be provided that permits parameter val-
uesto be set from dedicated observation blocks/ observing tem-
plates. To take advantage of this, laboratory setups would need to
be able to emulate VLT-compatible instruments to the extent that
VLT control software Sequencer scripts can be executed.

21

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

47

[tem

Requirement

Section

3.12.3 Detector library

68

A repository with parameter files for specific detector types and
their baseline operating modes shall be offered. For engineering
purposes, easy copying and editing of such files shall be sup-
ported. To the extent possible, different installations of compara-
ble detector systems shall share these data.

352

3.12.4 Disabling of components

69

It shall be possible to declare LRUs and channels defunct. In
response to this, the software should be able to automatically
adapt itself to the remaining hardware configuration.

351,352,47

3.12.5 Special modes

70

The following shall be foreseen:
= pocket pumping
e convenient connection of monitoring equipment such
as oscilloscopes, multimeters, and logic analysers

e determination of PTF of DC-coupled IR and CMOS
devices by a capacitive comparison technique

[AD9]

3.12.6 Programming interface

71

Thought shall be given to the provision of an efficient program-
mer’sinterface, ideally with a standard scripting language such as
Tcl/Tk, that permits engineers rapid proto-typing of detector con-
trol and data processing software.

2.1, [AD9]

3.12.7 Test facility

72

A cost-effective test facility for all types of LRUs shall be sup-
plied. It may either be integrated into the controller or stand-
alone.

Not within this scope.

73

Its software shall use the one of the NGC only.

Not within this scope.

74

An expandible collection of standard test functions shall be con-
Sidered.

Not within this scope.

48 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

[tem Requirement Section

75 Where applicable, test results should aso be offered in graphical Not within this scope.
form with an option for hardcopies.

3.12.8 Simulation modes

76 Standard VLT simulation modes shall be supported. Simulation 3.6, [AD9]
should be one of the standard modes of NGC rather than an add-
on.

77 To the greatest possible extent, simulation of key elements shall 3.6, [AD9]

be supported in both soft- and hardware.

78 Hardware simulators to generate programmabl e test pixel patterns Not used.
and video waveforms shall be devised.

79 Software simulators shall be hierarchically structured and permit 3.6, [AD9]
the simulation of data streams with real numbers and realistic data
rates so that relative timings, etc. can be tested.

6.2 NGC Software Requirements from [AD7]

[tem Requirement Section

3.1 Functional Requirements

3.1.1 Common Requirements

80 NGCIRSW shall handle at least TBD clocks, TBD biases, TBD 3.5.1,35.2,[AD9]
preamps and TBD video channels.

81 NGCIRSW will implement, as a minimum, the commands 7.2.2,[AD9]
aready used by FIERA and IRACE and described in their CDTs
with an interface which will allow backward compatibility.

82 The ONLINE status requires that all voltages are loaded and 3.2
switches closed as well astelemetry is acquired and checked.

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

49

[tem Requirement Section

83 NGCIRSW will handle multiple independent detectors. 35.1,352,4.7

84 It shall be possible to read number of windows limited only by 4.3
detector properties

85 Windows shall be read either in hardware through sequencesor in 42,43
software. The latter case impliesthat afull frameisread out and
then awindow of datais computed in memory.

86 Telemetry shall be available at all times, with the possibility to 32
have a separate period for logging on the VLT logMonitor.

87 NGCIRSW shall transfer al computed results to display (RTD) 21,4.2,4.9, [AD9]
and/or to FITSHile.

88 Display visualization isdone in parallel to all other data transfers [AD9]
(i.e. one may look at the DIT frame while storing the INT frame
to disk and while the next datais aready being processed).

89 If processing- or data-transfer-bandwidth exceeds the capacity of 21,45, [AD9]
one single compuiter, the task is split up to N computing units.

90 In order to test the image data path, NGC must be able to produce [AD9]
pre-defined data,
3.1.3 Infrared Specific Requirements

91 Each Pixel can be read out N times and an average is computed. [ADY]

92 Subsampling and digital filtering of individual pixels shall be pos- [AD9]
sible.

93 The ONLINE status requires that the system also starts readout. [AD9]

9 In case reference values on special channels are read out (e.g. 7.2
Hawaii2RG), NGC shall be able to interpolate through rows or
columns.

95 Chopping mode shall be implemented [AD9]

50

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

[tem Requirement Section
96 NGCSW shall be able to transfer bursts of raw datato FITSfiles. 4.4
97 Standard read-out modes: [AD9]

= Uncorrelated
= Double correlated (reset-read-read)
= Double correlated (read-reset-read)
= Leastsquare fit
= Fowler Sampling
3.2 External Interface Requirements
3.21 User Interfaces
98 NGCIRSW user interfaces will be devel oped following rules 5
described in [RD39].
99 The user interface for tel escope operations will merge functionali- TBD
ties of current FIERA and IRACE user interfaces.
100 Specific graphica interface may be developed in order to ease 5
engineer’s work in the laboratory. These interfaces may be devel-
oped not following the standards if their use is confined to labora-
tory.
3.2.3 Software Interfaces
101 Sequencer programming shall be implemented using a scripting [AD9]
language.
102 The scripting language will allow evaluation of arithmetic formu- [AD9]
las at run-time.
103 The startup overhead of the script must be as short as possible. [AD9]
104 Where no script is required a simple parsing can be done. [AD9]
105 A graphical tool shall be implemented in order to have also the Not within this scope.

possibility to program and visualize the sequences.

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

51

[tem Requirement Section
106 The format on disk of the sequences shall be ASCII. [AD9]
107 Other formats, non ASCII, for ancillary data (e.g. for graphics) [AD9]
could be used, but must not be required for running the system.
108 The sequence programming will allow free use of setup parame- [AD9]
ters.
109 The chopper frequency may be input parameter or output parame- [AD9]
ter of the sequencer program.
110 Free placement of synchronization points with external trigger. [AD9]
111 Read-out of multiple windows shall be configurable in program- [AD9]
ming.
112 Sub-pixel sampling (N samples per pixel) shall also be possible [ADY]
113 The sequencer programming tool will also allow to emulate the 3.6, [AD9]
real sequencer.
114 Interface to standard RTD shall be provided. 2.1, [ADY]
115 The interface and the library to be used are given in [RD40Q]. [ADY]
116 If needed flat-field frame and bad pixels mask shall be uploaded to [AD9]
NGCIRSW which will then distribute them to the relevant subsys-
tem.
3.2.4 Communications I nterfaces
117 Communication between internal subsystems of NGCIRSW shall 2.1, [AD9]
be implemented using VLTSW standard messaging tools as well
as CCS database.
118 Whenever not otherwise specified, the same standards will be [AD9]
used for all other communication interfaces.

52 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
[tem Requirement Section
3.3.2 Data Transfer
119 Datatransfer rate to the IWS shall be limited only by readout [AD9]
speed.
120 An overhead of max. 5 seconds will be considered acceptable. [AD9]
6.3 Adaptive Optics Requirements for NGC from [AD20]
[tem Requirement Section
AONGCREQ-004 | Number of detectors controlled from single NGC: 1-4 3.5.1,3.5.2,
[AD9]
AONGCREQ-005 | It should be possible to control multiple detectors with a sin- 35.1,352,47,
gle NGC. [AD9]
AONGCREQ-006 | Thedetectors controlled by asingle NGC al be read with the 4.1, [AD9]
same read-mode and frame rate. Operations such as start and
stop, should operate on all detectors simultaneously.
AONGCREQ-007 | It should be possible to synchronize the start of aread 4.9, [AD9]
sequence between NGCs
AONGCREQ-008 | The synchronization should alow the start of the readout in [AD9]
separate NGCsto be started within the frame jitter time.
AONGCREQ-009 | Ability to visualise 1 of N frames asynchronously on instru- [AD9]
ment WS using standard RTD, the value of N will be chosen
to allow visualisation on the WS of 1-4Hz, the maximum
frame rate required to the WS will be 50Hz.
AONGCREQ-010 | Ability store 1 of N frames asynchronously in FITS format [ADY]
on instrument WS, the value of N will be defined to allow a
maximum frame rate of 50Hz.

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

53

Item Requirement Section
AONGCREQ-011 | Ability to store a series of N guaranteed consecutive frames, [AD9]
where N should be sufficient to store aminimum of 2 seconds
of datawith agoal of 10s.
AONGCREQ-012 | At least one ROI (windowing/regions of interest) per detector 4.3, [AD9]

should be supported, as agoal multiple ROIs.

AONGCREQ-013

It should be possible to update the ROI definition (at a mini-

Not possiblein

mum start coordinates) dynamically when aloop of readouts theIR.
isin operation.

AONGCREQ-014 | Ability to synchronize the start of areadout sequence with an 4.9, [AD9]
external trigger to within 30 micro seconds.

AONGCREQ-015 | 1x1to 16x16 defined in steps of 1 pixel binning is the same 4.3, [AD9]
for each window within a given detector.

AONGCREQ-024 | It should be possible to command the NGC to execute a 4.7, [AD9]
defined read sequence for the defined mosaic

AONGCREQ-025 | N times. [AD9]

AONGCREQ-026 | with auser definable (in microseconds) delay (from O to [AD9]
TBD) between executions

AONGCREQ-027 | where N isavalue between 1 and Inf. [AD9]

AONGCREQ-028 | A stop command for a given mosaic should stop the current 3.5.1, [AD9]
loop of readout sequences at the completion of the next cycle

AONGCREQ- It should be possible to instruct the NGC to passa 15bit data | TBD - must be
028a ramp over the real time datalink in a standard frame includ- supported by

ing both start and end of frame words at frame rates up to the hardware
maximum supported

AONGCREQ-029 | Asagoadl it should be possible to load simulated images into TBD - must be
the NGC memory and have them ‘ played back’ over the RT supported by
datalink as though coming from anormal readout sequence. hardware

54 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837
[tem Requirement Section
AONGCREQ-030 | Thereplay speed should be auser parameter up to the maxi- TBD - must be
mum possible frame rate. supported by
hardware
AONGCREQ-038 | Define one (or more) ROIs for a specified detector with start 4.3, [AD9]
pixel and window dimensions.
AONGCREQ-039 | Define readout mode for detector mosaic. 4.1, 4.7, [AD9]
AONGCREQ-040 | Enable/Disable storage of detector frames. 4.2
AONGCREQ-041 | Define sub-sampling of readout to be passed to instrument 4.1, [AD9]
workstation for visualisation or storage.
AONGCREQ-042 | Start readout of mosaic of detectorsfor N cycles, 1<=N<=Inf 3.5.1,35.2,
[AD9]
AONGCREQ-043 | with optional synchronization with external synch signal. [AD9]
AONGCREQ-044 | Stop readout of amosaic of detectors. 3.5.1, [AD9]
AONGCREQ-045 | Acquire and store a contiguous set of N frames from a 4, [AD9]
‘group’ of detectors.
AONGCREQ-046 | Upload a set of detector frames to be replayed in simulation TBD - must be
mode. supported by
hardware
AONGCREQ-047 | Replay previoudy uploaded simulated data frames at defined TBD - must be
loop frequency. supported by
hardware

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

7

7.1

APPENDIX

Database Classes

7.1.1 Sequencer Class

CLASS BASE_CLASS ngcdcsSEQ
BEGA N

END

/1l Optional nane
ATTRI BUTE BYTES64 nane ““

/1l dock pattern file nane
ATTRI BUTE BYTES256 cl kFile “*

/1l Programfile nane
ATTRI BUTE BYTES256 prgFile “*

/] Status
ATTRI BUTE BYTES32 st atusNane “idl e”
ATTRI BUTE | NT32 status O

/1 Dwelltinme (multiplier and add)
ATTRI BUTE | NT32 tineFactor 1
ATTRI BUTE | NT32 tineAdd 0

/'l Sequencer continuous node fl ag
ATTRI BUTE | NT32 continuous 0O

/'l Sequencer trigger node flag
ATTRI BUTE | NT32 trigger Mbde 0

/1l Sequencer run-control flag
ATTRI BUTE I NT32 runCtrl 1

/| Read-out wi ndow
ATTRI BUTE I NT32 startX 1
ATTRI BUTE I NT32 startY 1
ATTRI BUTE I NT32 nx O
ATTRI BUTE I NT32 ny O

55

56 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

7.1.2 CLDC Class

CLASS BASE_CLASS ngcdcsCLDC
BEG N

/1 Optional nane

ATTRI BUTE BYTES64 nane “*

/1 Configuration file nane
ATTRI BUTE BYTES256 cfgFile “*

/] Status
ATTRI BUTE BYTES32 st at usNane “di sabl ed”
ATTRI BUTE | NT32 status O

// dock nmonitor 1
ATTRI BUTE | NT32 cl kMonl 1

// Clock nmonitor 2
ATTRI BUTE | NT32 cl kMon2 1

/'l clock-voltage settings of current CLDC board (Volt)
ATTRI BUTE Tabl e cl k(16,
BYTES64 nanelLow,
BYTES64 naneH gh,
DOUBLE vol t ageLow,
DOUBLE vol t ageHi gh,
DOUBLE r angellow,
DOUBLE rangelHi gh,
DOUBLE r ange2Low,
DOUBLE range2Hi gh,
| NT32 connect ed,
I NT32 reserved)

/1 DC-voltage settings of current CLDC-board (Volt)
ATTRI BUTE Tabl e dc(20,
BYTES64 nare,
DOUBLE vol t age,
DOUBLE r angel,
DOUBLE range2,
I NT32 connect ed,
I NT32 reserved)
END

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 57

7.1.3 ADC Class

CLASS BASE_CLASS ngcdcsADC
BEG N

/1 Optional nane

ATTRI BUTE BYTES64 nane “*

// Total nunmber of ADC units on this nodul e
ATTRI BUTE | NT32 num 4

/'l Number of bits per pixel
ATTRI BUTE | NT32 bitPix 16

/'l Nunber of enabled ADC units on this nodul e
ATTRI BUTE | NT32 enable 0O

/| Conversion strobe delay in ticks
ATTRI BUTE | NT32 delay O

/| Packet size
ATTRI BUTE | NT32 packet Si ze 4

/1 Packet routing | ength (number of packets from down-|i nk)
ATTRI BUTE | NT32 packetCnt O

/1 Conversion strobe 1 (enable/disable)
ATTRI BUTE | NT32 convertl

/| Conversion strobe 2 (enabl e/ disable)
ATTRI BUTE | NT32 convert 2

/1 Operational node
ATTRI BUTE | NT32 opMbde 0

/1 Sinulation node
ATTRI BUTE | NT32 si mvbde O

/1l Nonitor channel 1
ATTRI BUTE | NT32 nonitorl 1

/1 NMonitor channel 2
ATTRI BUTE | NT32 npnitor2 1

/1 Ofset per group
ATTRI BUTE Vector offset (32, DOUBLE)
END

7.1.4 Controller Base Class

CLASS BASE_CLASS ngcdcsCTRL

BEG N
LOOP 4 ATTRI BUTE ngcdcsSEQ seq_#
LOOP 8 ATTRI BUTE ngcdcsCLDC cl dc_#
LOOP 16 ATTRI BUTE ngcdcsADC adc_#

END

58

7.15

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

Acquisition Module Class

CLASS BASE_CLASS ngcdcsACQ
BEG N

END

/1 Optional nane
ATTRI BUTE BYTES64 nane

// Status

“ou

ATTRI BUTE BYTES32 statusNanme “idle”

ATTRI BUTE | NT32 st atus

/1 Process nane

0

ATTRI BUTE BYTES256 procNane “*“

/1 Nunber of bursts
ATTRI BUTE | NT32 bur st

0

/1 Number of franmes to skip before burst
ATTRI BUTE I NT32 burstSkip O

/1 Continuous node flag (no counter reset)

ATTRI BUTE | NT32 conti nuous O

/'l Transfer flag
ATTRI BUTE | NT32 transf

/1 Tabl e containing nanes and attributes of all

ATTRI BUTE Tabl e frange(

/1 Host name (NGC-LCU)
ATTRI BUTE BYTES64 host

/1 Command port

er 0

32,

BYTES64 nane,

| NT32
| NT32
| NT32
I NT32
I NT32
I NT32
| NT32

ATTRI BUTE | NT32 cmdPort O

/1 Data port
ATTRI BUTE | NT32 dat aPo

/1 Acquisition wi ndow

rt 0

ATTRI BUTE INT32 startX 1
ATTRI BUTE I NT32 startY 1

ATTRI BUTE INT32 nx O
ATTRI BUTE INT32 ny O

gen,

store,

br eakCond,
SX,

SY,

nx,

ny)

avai l abl e franes

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

7.1.6

System Status Class

CLASS BASE_CLASS ngcdcsSYSTEM
BEG N

END

/] Server
ATTRI BUTE

/'l Server
ATTRI BUTE

name
BYTES64 server Nanme “*

process id
I NT32 serverPid O

/'l Version string

ATTRI BUTE

BYTES256 version “*

/1 DET category index

ATTRI BUTE

/1 System
ATTRI BUTE

| NT32 detlndex 1

configuration file
BYTES256 sysCfgFile “*

/! Detector configuration file

ATTRI BUTE

BYTES256 detCfgFile “*

/1 Current operation node

ATTRI BUTE

/] System
ATTRI BUTE
ATTRI BUTE
ATTRI BUTE
ATTRI BUTE

/1l Al arm
ATTRI BUTE

/1 Nunber
ATTRI BUTE

/'l Nunber
ATTRI BUTE

/1 Nunber
ATTRI BUTE

/'l Nunber
ATTRI BUTE

/1 Nunber
ATTRI BUTE

/] Status-

ATTRI BUTE

BYTES32 opMode “ NORVAL”

st at us

BYTES32 st at eNane “ OFF”

I NT32 state 1

BYTES32 subSt at eNane “idle”
| NT32 subState 1

BYTES256 al arm “*

of sequencer nodules in system
I NT32 nuntCl dcMbd 0O

of CLDC npdul es in system
I NT32 nunSeqMbd 0O

of ADC nodul es in system
| NT32 numAdcMod O

of acquisition nodules in system
I NT32 numAcqMbd O

of FITS header bl ocks to reserve
I NT32 fitsHdrSize O

polling flag
I NT32 polling O

/'l Current action for action |og

ATTRI BUTE

/1 Tabl e containing the dynam c system paraneters

ATTRI BUTE

BYTES256 current Action “*

Tabl e param(128,
BYTES32 nane,
BYTES32 val ue)

59

60 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

7.1.7 Exposure Class

CLASS i nscEXPOSURE ngcdcsEXP
BEG N
/1 Exposure status
ATTRI BUTE BYTES32 expStat usNanme “inactive”

// Path to detector data
ATTRI BUTE BYTES256 dataPath “*

/] New data file
ATTRI BUTE BYTES256 newDat aFi | eNane “*

/'l Exposure base nanme
ATTRI BUTE BYTES256 baseNanme ““

/1 Nam ng schene used (default request-nam ng)
ATTRI BUTE | NT32 nami ng 1

/1 Miltiple files
ATTRI BUTE | NT32 oneFile 1

/] Data file fornmat
ATTRI BUTE | NT32 format 1

/| Exposure tinme (seconds)
ATTRI BUTE I NT32 tine O

/1l Exposure countdown (seconds)
ATTRI BUTE | NT32 count Down O

/'l Generate extended FITS header
ATTRI BUTE | NT32 extFits O

END

7.1.8 Read-Out Mode Definition Class

CLASS BASE_CLASS ngcdcsMODE

BEGA N
/1 Current read-out node (nane)
ATTRI BUTE BYTES64 readMbdeNane ““

/1 Current read-out node (id)
ATTRI BUTE | NT32 readMbdeld 0O

/1 Tabl e containing nane and id and a short description of
/1 all defined read-out nodes (ternminated with enpty string
/1 and/or negative id)
ATTRI BUTE Tabl e readModeli st (32,
BYTES64 nare,
INT32 id,
BYTES256 desc)
END

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

7.1.9 Guiding Class

CLASS BASE_CLASS ngcdcs2AG
BEG N
/1l Offset correction vector + quality
ATTRI BUTE Vector offset (3, FLOAT)
END

7.1.10 Chopper Interface Class

CLASS BASE_CLASS ngcdcsCHOPPER
BEG N
/1 Chopper status (on or off)
ATTRI BUTE | NT32 status O

/'l Frequency
ATTRI BUTE DOUBLE freq 0.0

/1l Transition tine
ATTRI BUTE DOUBLE transTine 0.0
END

7.1.11 Server Class

CLASS ngcdcsCTRL ngcdcsSERVER

BEA N
LOOP 32 ATTRI BUTE ngcdcsACQ acq_#
ATTRI BUTE ngcdcsSYSTEM system
ATTRI BUTE ngcdcsEXP exposure
ATTRI BUTE ngcdcsMODE node
ATTRI BUTE ngcdcs2AG gui di ng

END

CLASS ngcdcsSERVER ngci r conSERVER
BEGA N

ATTRI BUTE ngcdcsCHOPPER chopper
END

61

62 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

7.2 Reference

7.2.1 ngcircon Server

NAMVE

ngcircon - NGCI RSW control server
SYNOPSI S

ngci rcon [options]

DESCRI PTI ON

NGClI RSW control server. The server is based on the CCS event
tool kit EVH Commands can be sent to the server via the
CCS nmessage system

OPTI ONS

-db <poi nt> - database point (wthout instance)
(default: point = <alias>ngcircon)

-inst <l abel > - server instance | abel
(default: label =)

-cfg <file-name> - load systemconfiguration file

-dcf <file-name> - detector configuration file

-si m <LCU| HW - start in sinulation node

-online - go online after start

-start - auto-start at online

- pol | - enabl e status polling

-gui [nane] - launch QU (nane is optional)
(default: no GU)

-1d <dictionary> - load dictionary (repetitive)

-det <index> - detector category index
(default: index = 1)

-xterm - start processes in x-termnal

-verbose <l evel > - verbose | evel
(default: level = 0)

-log <l evel > - log |evel
(default: level = 0)

-shel | - launch conmmand shel |

-hel p or -usage - show options

ENVI RONVENT

The environnment variables INS ROOT and INS _USER are used to build

the basic search paths ($INS_ROOT/$INS USER/...) for configuration
files unless absolute paths are given. If the | NS_USER environnent
variable is not set, then the default value SYSTEMis assuned.

COVIVANDS

The commands are defined in the command definition table of the
server (ngcircon.cdt).

SEE ALSO
ngcdcsEVH(4), ngcdcsCTRL_CLASS(4), evhTASK(4), EVH(5)

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

7.2.2 Command Definition Table

PUBLI C_COMVANDS

COVMAND=

FORMAT=

PARAVETERS=
PAR_NAVE=
PAR_TYPE=

PAR_OPTI ONAL=

REPLY_FORMAT=

REPLY_PARAMETERS=
PAR NAME=
PAR TYPE=
PAR _DEF_VAL=

HELP_TEXT=

Abort exposure.

@

COMVAND=

FORVAT=
REPLY_FORVAT=
HELP_TEXT=

I nterrupt server.

@

COVVAND=

FORMAT=

PARAVETERS=
PAR_NAVE=
PAR_TYPE=

PAR_OPTI ONAL=

PAR_NAVE=
PAR TYPE=

PAR_OPTI ONAL=

PAR_NAVE=
PAR_TYPE=

PAR_OPTI ONAL=

PAR_NAVE=
PAR_TYPE=

PAR_OPT| ONAL=

PAR_NAVE=
PAR_TYPE=

PAR_OPTI ONAL=

PAR_NAVE=
PAR_TYPE=

PAR_OPTI ONAL=

PAR_NAVE=
PAR_TYPE=

PAR_OPT| ONAL=

PAR_NAVE=
PAR TYPE=

PAR_OPTI ONAL=

PAR_NAVE=
PAR_TYPE=

ABORT
A

expol d

| NTEGER
YES

A

done
STRI NG
“ oK

BREAK

A

CLDC
A

nodul e
| NTEGER
YES

defaul t
LOGE CAL
YES

enabl e
LOG CAL
YES

di sabl e
LOGE CAL
YES

zero
LOG CAL
YES

calibrate
LOG CAL
YES

cl ear
LOGE CAL
YES

check
LOGE CAL
YES

restore
STRI NG

63

64 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

PAR_OPTI ONAL=YES

PAR_NANE= save

PAR_TYPE= STRI NG

PAR_OPTI ONAL=YES
REPLY FORMAT= A
REPLY_ PARAMETERS=

PAR_NAME= done

PAR_TYPE= STRI NG

PAR DEF VAL= “K”
HELP_TEXT=

CLDC nodul e interaction. The -nodul e option specifies the

CLDC nodul e the command refers to. Mdul e nunbers start with 1.
A zero nodul e nunber refers to all nodules. -default wll

reset all voltages to their default values as defined in the

vol tage configuration file. -enable/-disable will enable/disable
the output of the referenced nodule. -zero sets all voltages on
the nodule to zero. -calibrate perforns a calibration which can
be cleared with -clear. -check checks all voltages on the nodul e
against the telenetry. -restore restores the setup value of a
vol tage keyword to the value as it was given in the configuration
file. -save saves the current voltage configuration to the given

file.

@

COMVAND= END

FORVAT= A

PARAMETERS=
PAR_NAME= expol d
PAR_TYPE= I NTEGER
PAR_OPTI ONAL=YES

REPLY_FORMAT= A

REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR_DEF_VAL= “ K’

HELP_TEXT=

Term nate exposure as quickly as possible with an internediate result.
@

COMVAND= EXIT
FORNMAT= A
REPLY_FORMAT= A
HELP_TEXT=
Make the server exit/term nate.
@
COVIVAND= FRAME
FORNMAT= A
PARAMETERS=
PAR_NAME= nmodul e
PAR_TYPE= | NTEGER

PAR_OPTI ONAL=YES

/1 frame nanme
PAR_NAME= nane
PAR_TYPE= STRI NG
PAR_OPTI ONAL=NO

/'l generate
PAR_NANE= gen
PAR_TYPE= STRI NG

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

PAR_OPTI ONAL=YES

/] store
PAR_NANME= store
PAR_TYPE= STRI NG

PAR_OPTI ONAL=YES

/1l break condition
PAR_NAME= br eak
PAR_TYPE= | NTEGER
PAR_OPTI ONAL=YES

/1l window to be transferred
PAR_NAME= w n

PAR_TYPE= | NTEGER
PAR_OPTI ONAL=YES
PAR_MAX_REPETI Tl ON=4

REPLY_FORVAT = A
REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR DEF VAL= “CK’
HELP TEXT =

Data frame setup. The -nbdul e option specifies the acquisition
nodul e the command refers to. Mdul e nunbers start with 1. A zero
nmodul e nunber refers to all nodul es. -name defines the nane of
the frame type to which the conmand refers. -gen/-store define
whet her the frame of the given type will be generated and/or
stored to disk. -break defines the nunber of franes of that type
to be produced until the exposure can term nate (break condition).
-win followed by START-X, START-Y, NX, NY specifies a software

wi ndow to be applied for that frame type.

@

COMVAND= KI LL

FORVAT= A
REPLY_FORVAT= A

HELP_TEXT=

Send a KILL signal to the server.
@

COVIVAND= MBGDLOG
FORVAT= A
REPLY_FORMAT= A

HELP_TEXT=

Di sabl e aut ol oggi ng of messages sent or received by the application.
@

COMVAND= MSCGELOG
FORMVAT= A
REPLY_FORNMAT= A

HELP_TEXT=

Enabl e aut ol oggi ng of messages sent or received by the application.

@

COVMVAND= NGC
FORMAT= B
REPLY_FORMAT= A
HELP_TEXT=

| ssue a NGC conmmand. This is a lowlevel interface to all
NGC hardware functions.

@

65

66 NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

COMVAND=

FORVAT=

REPLY_FORMAT=

REPLY_PARAMETERS=
PAR NANE=
PAR TYPE=
PAR _DEF_VAL=

HELP_TEXT=

Cl ose all devices

@

COVVAND=
FORMAT=
REPLY_FORMAT=
REPLY_PARAMETERS=
PAR_NAVME=
PAR_TYPE=
PAR_DEF_VAL=
HELP_TEXT=

done
STRI NG

and nmake all

ONLI NE

done
STRI NG

Bring server to on-line state.

@

COVAND=
FORMAT=
REPLY_FORMAT=
REPLY_ PARAMETERS=
PAR_NAVE=
PAR_TYPE=
PAR_DEF_VAL=
HELP_TEXT=

Make a check of the functioning of the server and send back an

Pl NG
A
A

done
STRI NG

overal | status nessage

@

COMVAND= RESET

FORNMAT= A

REPLY_FORMAT= A

REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR DEF_VAL= “CK"

HELP TEXT=

Reset controller front-end

@

COMVAND= SELFTST

FORVAT= A

PARAVETERS=
PAR_NAME= function
PAR_TYPE= STRI NG
PAR_OPTI ONAL=YES
PAR_MAX_REPETI TI ON=999
PAR NANE= r epeat
PAR_TYPE= | NTEGER
PAR_OPTI ONAL=YES
PAR DEF VAL= 1

REPLY FORNVAT = A

REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG

sub- processes term nate

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

PAR_DEF_VAL= “ K’
HELP_TEXT =
Execute a selftest (hardware and software) of the specified
function(s). -repeat specifies, how often the given test is
repeated in a loop. Valid functions are SEQ CLDC, ADC and ACQ
If no function is given, then an overall selftest of all
functions is perforned.

@
COMVAND= SEQ
FORVAT= A
PARAMETERS=
PAR_NAME= nmodul e
PAR_TYPE= I NTEGER
PAR_OPTI ONAL=YES
PAR_NANME= save
PAR_TYPE= STRI NG
PAR_CPTI ONAL=YES
PAR_NAME= tno
PAR_TYPE= | NTEGER
PAR_COPTI ONAL=YES
PAR_MAX_REPETI Tl ON=2
PAR_NAME= wai t
PAR_TYPE= STRI NG
PAR_COPTI ONAL=YES
PAR_NANME= st op
PAR_TYPE= LOG CAL
PAR_CPTI ONAL=YES
PAR_NAME= start
PAR_TYPE= LOG CAL
PAR_CPTI ONAL=YES
PAR_NAME= step
PAR_TYPE= LOG CAL
PAR_OPTI ONAL=YES
PAR_NAME= trigger
PAR_TYPE= LOG CAL
PAR_CPTI ONAL=YES
REPLY_FORNMAT= A
REPLY_PARAMETERS=
PAR _NAME= done
PAR_TYPE= STRI NG
PAR_DEF_VAL= “K”
HELP_TEXT=

Sequencer nodul e interaction. The -nodul e option specifies the
sequencer modul e the command refers to. A zero nodul e nunber
refers to all nodules. -start starts the sequencer and the

associ ated acqui sition processes. -stop stops the sequencer

and the associated acquisition processes. -step starts sequencer
and acquisition and lets the sequencer run till next breakpoint.
-save saves the current clock pattern configuration to the given
file. -tno specifies a timeout (in seconds) for the sequencer wait
instruction. The second paraneter of this function gives a polling
interval in mlliseconds (default is 100). -wait waits for the
speci fi ed sequencer program event (trigger|break|end) to occur
Modul e nunmbers start with 1. -trigger issues a software trigger.

67

68 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

@

COVMAND= SETUP

FORMAT= A

PARAVETERS=
PAR_NAME= expol d
PAR_TYPE= | NTEGER
PAR_OPTI ONAL=YES
PAR_NAME= file
PAR_TYPE= STRI NG
PAR_OPTI ONAL=YES

PAR_MAX_REPETI TI ON=999

PAR_NAME= function
PAR_TYPE= STRI NG
PAR_OPTI ONAL=YES

PAR_MAX_REPETI TI ON=999

PAR_NAME= defaul t

PAR_TYPE= LOG CAL

PAR_OPTI ONAL=YES
REPLY FORNVAT = A
REPLY_PARAMETERS=

PAR_NAME= done

PAR_TYPE= STRI NG

PAR DEF VAL= “K”
HELP_TEXT =

Setup the functions as listed. The -default flag sets all
paranmeters to their default values as specified in the
paranmeter default setup file.

given file.

-file loads a setup fromthe

@

COMVAND= SI MULAT

SYNONYMS= SI'M

FORNVAT= A

PARAVETERS=
PAR_NAME= function
PAR_TYPE= STRI NG
PAR_OPTI ONAL=YES

REPLY_FORVAT= A

REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR DEF VAL= “CK’

HELP TEXT=

Switch to sinulation nmbde. If function is LCU then all processes
wi Il be launched on the local host and all HWis sinulated. If no
function is specified or function is set to HWN then only the
hardware is sinulated. ther values for function nay be used to

set additional subsystens to sinulation node.

@

COMVAND= STANDBY

FORMAT= A

REPLY_FORVAT= A

REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR_DEF_VAL= “K’

HELP_TEXT=

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837 69

Bring server to stand-by state. Sub-processes are running, but
t he physical connection to the hardware is cl osed.

@
COMVAND= START
FORVAT= A
PARAMETERS=
PAR_NAME= expold
PAR_TYPE= | NTEGER
PAR_OPTI ONAL=YES
PAR_NAME= at
PAR_TYPE= STRI NG
PAR_OPTI ONAL=YES
PAR _DEF_VAL= “now
REPLY_FORMAT= A
REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR_DEF_VAL= “ K’
HELP_TEXT=
Start new exposure. -at defines a start tine (UTC) in the
ISOtime format hh:mm[ss[.uuuu]]. If -at is not present or

contains the value <now>, then the exposure is started
i medi ately.

@
COMVAND= STATUS
FORVAT= A
PARAMETERS=
PAR_NAME= expol d
PAR_TYPE= I NTECER
PAR_OPTI ONAL=YES
PAR_NAME= function
PAR_TYPE= STRI NG
PAR_OPTI ONAL=YES
PAR_NMAX_REPETI Tl ON=999
REPLY_FORNMAT = A
HELP_TEXT =
Get status for various functions.
@
COMVAND= STOPSI M
FORVAT= A
REPLY_FORVAT= A
REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR DEF_VAL= “K"
HELP_TEXT=
Switch to nornal operation node.
@
COMVAND= VERBCSE
FORVAT= A
PARAMETERS=
PAR_NANME= on
PAR_TYPE= LOG CAL

PAR_CPTI ONAL=YES

PAR_NANE= of f

VLT-SPE-ESO-13660-3837

70 NGC Infrared DCS Design - 2.5
PAR TYPE= LOGE CAL
PAR_OPTI ONAL=YES

REPLY_FORMAT= A

HELP_TEXT=

Switch verbose node on/off.

@

COMVAND= VERSI ON

FORVAT= A

PARANMETERS=

REPLY_FORMAT= A

HELP_TEXT=

Return the actual server version.

@

COVIVAND= VWAI T
FORVAT= A
PARAMETERS=
PAR_NAME= expol d
PAR_TYPE= | NTEGER
PAR_OPTI ONAL=YES
REPLY_FORMAT= A
REPLY_PARAMETERS=
PAR_NAME= expSt at us
PAR_TYPE= | NTEGER
PAR_DEF_VAL= 0
HELP_TEXT=

Wait for exposure to finish. The comrand i nmedi ately
returns an internmediate reply indicating the current exposure
status. The last reply is sent, when the exposure has fini shed.

@
MAI NTENANCE _COMVANDS
TEST_COMVANDS

Il --- 000 ---

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

7.2.3 Control Server Class

NAME

ngcdcsEVH - NGC engi neering server base cl ass
SYNOPSI S

#i ncl ude <ngcdcsEVH. h>

ngcdcsEVH server();

PARENT CLASS
ngcdcsEVH public evhTASK, public ngcdcsSRV

DESCRI PTI ON

NGC engi neering server base class. The server is based on the
CCS event tool kit EVH Commands can be sent to the server via
the CCS nessage system

PUBLI C METHODS

ngcdcsEVH() ;
Constructor nethod (use default controller).

ngcdcsEVH(ngcdcsCTRL *controller);
Constructor nethod with specific controller.

virtual ~ngcdcsEVH();
Destruct or net hod.

const char *Version();
Returns the current version string.

voi d SysCfgDefault(const char *cfg);
Specify a default systemconfiguration file to be used if no
explicit configuration is requested via command |ine. By default
no configuration file is applied but a hard-coded configuration
for one single nmain-board and one acquisition nodule is used.

voi d DbPoi nt Def aul t (const char *point);
Specify a default database point to be used if no explicit point
is requested via command |ine. By default the database point is
set to <alias>ngcdcs. In any case the instance |abel will be added
to the database point nane. The actual point to be used is always
stored in the public data menber <dbPoint>.

void PrintUsage();
Prints out all server comand |ine options.

ccsCOWPL_STAT Par seArgunents(int argc, char **argv);
Parses the server command |ine for additional argunents.

int Xterm();
Returns 1 in case sub-processes should start in a separate
wi ndow.

ngcb_vb_t VerboseHandl er ();
Returns the actual verbose nessage handl er.

i nt VerboselLevel ();
Returns current verbose-|level.

int LogLevel ();
Returns current |og-Ievel.

voi d Verbose(const char *fornmat, L)

void Verbose(int level, const char *format, ...);
Ver bose method. A nessage is put on the standard output depending
on the current verbose |level. The nessage is al so | ogged dependi ng

71

72

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

on the current log level. If the verbose level is zero, the nessage
is not printed out. If log level is zero the nmessage is not | ogged.
The second version additionally conpares with a given <level> to

be exceeded.

voi d Log(const char *format,

void Log(int |evel, const char *format)5
Log net hod. The message | ogged dependl ng on the current |og
level. If the log level is zero the nessage is not |ogged.
The second version additionally conpares with a given <level> to
be exceeded.

voi d AddVerbose(const char *format, .
Ver bose nethod. The nessage is al V\ays printed out.

voi d AddLog(const char *format, 2);
Log met hod. The nmessage is al ways | ogged.

virtual void VerboseCB(const char *nsg);
Ver bose out put call - back.

virtual void LogCB(const char *nsgQ);
Log out put call -back.

ccsCOVPL_STAT Initialize();
Initialize the control server (call-backs, database, ...).

ccsCOVPL_STAT Abort();
Abort the control server. This function should be called before

exiting. It will shutdown all all sub-nopdul es (sequencer, CLDC,
ADC, acquisition). The sequencer(s) will be stopped, the CLDC
nodul e(s) will be disabled and the acquisition processes will

be term nated before. The | ast step before deleting the HWnodul es
will be a reset. After being aborted the system may be brought up

again with the Initialize() menber function.

i nt Mai nLoop();
Enter server nmain |oop. The function returns an exit status
intended to be passed to the exit() function. Exit status zero
i ndi cates that the MinLoop returned successfully.

ccsCOWPL_STAT CmdCal | back(const char *cnmd, evhCB_METHOD2 net hod);
Add a command cal | -back. The given nmethod will be called upon
reception of the specified command.

voi d Ent er CB(msgMESSACGE &msg, vItLOG CAL fl ag=TRUE);
This function should be called after entering a call-back nethod.
If the flag has a TRUE value, this indicates, that the nethod
is active (i.e. will change system paraneters). |f the flag
has a FALSE value, this indicates, that the function will be
passive (i.e. the system does not change in case of a successful
operation).

ccsCOWPL_STAT Exit CB();
This function should be called before | eaving the call-back mnethod.
This will occasionally update the database and server internals
(i f sonething has changed).

voi d Exit CB(msgMESSAGE &nsg);
Same as the above function, but this will additionally send back
the reply nessage.

voi d C eanupCB();
Cl eanup cal | back internals, which may have been set during
Enter CB(). Wen not using the ExitCB(nmsgMESSAGE &nsg) this
function should be called after the last reply has been sent.

ccsCOWPL_STAT CheckSysCfg(ngcdcs_syscfg t cfg);
Checks the given system configuration structure (range check,
consi stency check, ...). See below for a description of the

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

configuration structure.

ccsCOWPL_STAT CheckDet Cf g(ngcdcs_detcfg t cfg);
Checks the given detector configuration structure (range check,
consi stency check, ...). See below for a description of the
configuration structure.

virtual int LoadSysCfg(ngcdcs_detcfg_t *cfg, const char *nane);
Upl oadi ng nethod for system configuration. The nmethod can be
overl oaded to inplenent specific file formats. Mist return either
ngcbSUCCESS i n case of successful operation or ngcbFAl LURE and
an error nessage in ErrMg().

virtual int LoadDetCfg(ngcdcs_detcfg_t *cfg, const char *nane);
Upl oadi ng nethod for detector configuration. The nethod can be
overl oaded to inmplenment specific file formats. The configuration
shoul d be checked with the CheckDet Cfg() nethod before returning
with success. Miust return either ngcbSUCCESS in case of successful
operation or ngcbFAILURE and an error nessage in ErrMsg().

ccsCOWVPL_STAT Confi gure(ngcdcs_syscfg_t cfg);
Apply a new system configuration. The configuration should have
been checked with the CheckSysCfg() method before. See bel ow
for a description of the configuration structure. The Shutdown()
nmethod is called before the new system configuration is applied.

voi d Shut down()
Shut down al | devices/nmodul es. This function is called internally
fromw thin the Configure() method before a new system
configuration is applied.

virtual ccsCOVPL_STAT Confi gureCBl(ngcdcs_syscfg_ t cfg);

virtual ccsCOWMPL_STAT Confi gureCB2(ngcdcs_syscfg_t cfg);
A cal | -back function which is executed fromw thin the Confi gure()
met hod before and after internal configuration is done. By
overl oading this functions application specific system
configuration may be added. See bel ow for a description of the
configuration structure.

virtual void ShutdownCB1();

virtual void ShutdownCB2();
A cal | -back function which is executed fromw thin the Shutdown()
nmet hod before and after shutdown of the internal nodules is done.
The nethods shoul d be used to shutdown application specific
devi ces/ nodul es. The shutdown nust be clean (i.e. does not
return with an error).

int FitsBlock();
Returns the nunber of FITS-header bl ocks as proposed by the
system

virtual ccsCOVWPL_STAT ExpCB(int errorld,
vl t Ul NT32 newSt at e,
const char *newFil e,
const char *errorString);
Cal | -back function, which is executed upon an exposure event.
The new exposure state can be an or’ ed conbi nati on of the
foll owi ng val ues:

ngcdcsEXP_NONE (0)
ngcdcsEXP_I NACTI VE (1)
ngcdcsEXP_PENDI NG (2)
ngcdcsEXP_| NTEGRATI NG (4)
ngcdcsEXP_PAUSED (8)
ngcdcsEXP_READI NG _QUT (16)
ngcdcsEXP_PROCESSI NG (32)
ngcdcsEXP_TRANSFERRI NG (64)
ngcdcsEXP_COWPL_SUCCESS (128)
ngcdcsEXP_COVPL_FAI LURE (256)
ngcdcsEXP_COMPL_ABORTED (512)

73

74 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

If the state has not changed the newState will have the val ue
ngcdcsEXP_NONE (0). If <newFile> is not en enpty string, then

a newfile with the given name has been created. <newrile> contains
a full path name. If <errorString>is not an enpty string, then

an error occured. The error logging will already have been done in
that case, so this has mainly an infornative purpose.

vl t U NT32 ExpStatusVval ();
Returns the current exposure state.

char *ExpStatusString();
Returns current exposure state as string val ue.

vl tLOG CAL ExpActive();
Returns TRUE in case the exposure is active. OQtherwise FALSEE is

ret ur ned.

ngcbPARAM LI ST *Par anLi st ();
Returns a pointer to the global dynam c paraneter list. The
list is used by both the acquisition nodul es and the sequencer
nodul es. See man- page of ngcdcsACQ 4), ngcdcsSEQ 4) and ngcbPARAM 4)
for details.

virtual void ExitSignal (int sig);
Exit signal handl er. The ngcdcsEVH: : Exit Signal (sig) instance
shoul d al ways be call ed before adding own stuff to this call-back.

ccsCOWPL_STAT ReadAddr (ngchl FC *dev, ngcb_route_t route, int address,
int *buffer, int size);
Reads size words fromthe given device address into buffer.
The ngcb_route_t structure contains the follow ng el ements:

i nt nunHdr; - Nunber of headers to target including
the term nating <0x2>
int hdr [ngcbhMAX_MOD] ; - Array of headers including the

term nating <0x2>

ccsCOVPL_STAT Wit eAddr(ngcbl FC *dev, ngcb_route_t route, int address,
int *buffer, int size);
Wites size words frombuffer to the given device address.
The ngcb_route_t structure contains the follow ng el ements:

int numHdr; - Nunber of headers to target including
the terninating <0Ox2>
i nt hdr[ngcbhMAX_MOD] ; - Array of headers including the

term nati ng <0x2>

ccsCOWPL_STAT Wi teBuffer(ngchl FC *dev, int *buffer, int size);
Wites a formatted buffer to the given interface device.
The format of the buffer is:
<hdr1l hdr2 ... hdrN address datal data2 ...>

ccsCOWPL_STAT ReadAddr (int idx, ngcb_route_t route, int address,
int *buffer, int size);
ccsCOWPL_STAT WiteAddr(int idx, ngcb_route_t route, int address,
int *buffer, int size);
ccsCOWPL_STAT WiteBuffer(int idx, int *buffer, int size);
Sane as the above functions, but using the device instance
nunmber instead of the device pointer itself. The device indices
start from zero.

ngcdcsCLDC *d dchMod(ngebl FC *dev, ngcb_route_t route);
Mbdul e creation hook for the CLDC nodul e. An instance of a
cl ass derived fromthe ngcdcsCLDC cl ass nmust be returned.
The device and the route should be passed to the underlying
constructor. In case of failure a NULL pointer should be returned
and an error should be added to the error-stack.

ngcdcsSEQ * Seqvbd(ngcbl FC *dev, ngcb_route_t route, ngcbPARAM LI ST *list);
Modul e creation hook for the sequencer nodule. An instance of a
cl ass derived fromthe ngcdcsSEQ cl ass nmust be returned.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

The device and the route should be passed to the underlying
constructor together with a pointer to a dynam ¢ parameter |ist
(for details see nan-page of the ngcbSEQ(4) and ngcbPARAM 4)
classes). In case of failure a NULL pointer should be returned
and an error should be added to the error-stack.

ngcdcsADC * AdcMbd(ngcbl FC *dev, ngcb_route_t route, int num;
Modul e creation hook for the ADC nodul e. An instance of a
cl ass derived fromthe ngcdcsADC cl ass nmust be returned.
The device and the route should be passed to the underlying
constructor together with the nunber of ADC groups in this
nmodul e. I n case of failure a NULL pointer should be returned
and an error should be added to the error-stack.

ngcdcsACQ *Acqvbd(ngcdcs_acq_cfg_t cfg, ngcbPARAM LI ST *list);
Modul e creation hook for the acquisition nodule. An instance of a
cl ass derived fromthe ngcdcsACQ cl ass must be returned.
A pointer to a dynanmic paraneter |ist nust be passed to
the underlying constructor (for details see nan-page of the
ngcdcsACQ(4) and ngcbPARAM 4) classes). In case of failure a NULL
poi nter should be returned and an error should be added to the
error-stack.

virtual int PostProcCB(void *buffer, ngcdcs_finfo_t *finfo, char *erns);
Post processing call-back, which is executed whenever a new frane
has been received. The ngcdcs_finfo_t structure <finfo> contains

all information for the <buffer> and has the follow ng nenbers:
int type; - Unique frane type
char name[64]; - Uni que frane name
int fcnt; - Franme counter
int scal eFactor; - Scaling factor to be applied to normalize
int bitPix; - Bits per pixel as defined in the FITS standard
int sx; - Lower left corner (x-direction)
int sy; - Lower left corner (y-direction)
int nx; - Dinension in x-direction
int ny; - Dinension in y-direction
doubl e crpi x1; - Reference pixel in x-direction
doubl e crpi x2; - Reference pixel in y-direction
i nt detldx; - Detector index (for nosaics)
int expCnt; - Exposure counter for this type
char utc[64]; - Time when frame was ready in the pre-processor
ngcdcsCUBE *cube; - Data cube object to be used for storing to a cube

The ngcdcsCUBE cl ass contains the foll ow ng:

FI LE *fd; - File descriptor

int naxisi; - Dinension in x-direction

i nt naxis2; - Dinmension in y-driection

i nt naxis3; - Nurber of inages

int bitPkix; - Bits per pixel as defined in the FITS-standard
char fileNane[256]; - Actual filename (full path)

char frameNane[64]; - Frame type name for all inmages in the cube

int Size(); - Return current cube size

Cl ose(); - C ose the cube

int Open(const char *path, const char *nane); - Open the cube

Type and di nension shoul d be cross checked for consistency with
the stored values in <cube> before adding a frane to a cube.
The post-processing call-back may return one of the follow ng:

ngcbSUCCESS - Successful operation
ngcbFAI LURE - Failure (an error should be added to the error-stack)
ngcbSKI P - Successful operation - but skip all further

actions on the frame (no storage to file,...)

ccsCOVPL_STAT Onli neCB1();
ccsCOVPL_STAT Onli neCB2();
ccsCOWPL_STAT St anbbyCB1();
ccsCOWVPL_STAT St andbyCB2() ;
ccsCOVPL_STAT O f CB1();
ccsCOVPL_STAT O f CB2();
State swi tching hook before (1) and after (2) internal

75

76 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

st at e- swi t chi ng.

ccsCOWPL_STAT SetupCBl(char **list, vlItINT32 *size);
Cal | -back function, which is executed before the internal setup
is done. The setup list contains pairs of paraneter nanes and
val ues. The list has to be exanined here. Application specific
parameters have to be renoved fromthe list as the internal
setup handl er woul d report an error for those. So the list and
size nay be nodified. Paraneters to be handled after the internal
setup has been done, nust neverthel ess be renoved fromthe I|ist
and have to be kept in the overloading class in order to be
processed afterwards in the SetupCB2().

ccsCOVPL_STAT Set upCB2();
Cal | -back function, which is executed after the internal setup
has been done. The functions to be executed have to be extracted
in the SetupCBl() nethod.

virtual int LookupCB(const char *nane, char *val ue);
Cal | back for parameter |ookup. The function nust return
non-zero in case the paraneter given by its <name> has
been resol ved and the val ue had been properly set. O herw se
zero nust be returned. The value should contain the properly
formatted data w thout unit and without conment.

PUBLI C DATA MEMBERS
char dbPoint[256]; - actual database point nane

int state; - Server state. This is one of

ngcdcsSTATE_OFF (evhSTATE_OFF)
ngcdcsSTATE_LOADED (evhSTATE_LOADED)
ngcdcsSTATE_STANDBY (evhSTATE_STANDBY)
ngcdcsSTATE_ONLI NE (evhSTATE_ONLI NE)

int subState; - Server sub-state. This is one of

ngcdcsSUBSTATE_| DLE (1)
ngcdcsSUBSTATE_BUSY (2)
ngcdcsSUBSTATE_ACTI VE (6)
ngcdcs SUBSTATE_ERRCR (8)

ngcdcsACQ *acq[ngcdcsACQ MAX_PROC] ; - acquisition nodul e instances
i nt numAcgqMod; - nunber of nodul e i nstances
ngcdcsCTRL *ctrl; - Instance of the controller class. See nan page

of ngcdcsCTRL(4) for details.

i nt readMbdel d; - Current read-node id

char readMvbdeNane[64] ; - Current read-node nane

ngcbDl C di ctionary; - Object holding the paraneter specifications
fromall |oaded dictionaries.

i nt detl ndex; - Detector category index

ngcdcs_syscfg_t sysCfg; - Current system configuration

ngcdcs_detcfg_t detCfg; - Current detector configuration

char opMode[32] ; - Current operation node. This a string val ue
containing either "HMsim "LCUsini or
"normal". It corresponds to the value of the

simflag (0,1,2) in the sysCfg structure.

NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

int

int

The
t he

The
t he

The

pol I'i ng; - Enabl e/ Di sabl e polling of sub-system status
(default is O - disabled).

pol I I nterval ; - Polling interval (in ns). Default is 1000 ns.

system configuration structure ngcdcs_sys_cfg_t contains
foll owi ng menbers:

Interface device system configuration:
ngcdcs_dev_cfg_t dev[ngcdcsCTRL_MAX_DEV] ;

CLDC system configuration:
ngcdcs_cl dc_cfg_ t cldc[ngcdcsCTRL_MAX CLDC] ;

Sequencer system configuration:
ngcdcs_seq_cfg_ t seq[ngcdcsCTRL_MAX_SEQ ;

ADC- nodul e system configurati on:
ngcdcs_adc_cfg_t adc[ngcdcsCTRL_MAX_ADCMOD] ;

Acqui sition nodul e system configuration:
ngcdcs_acq_cfg_t acq[ngcdcsACQ MAX_PRCOC ;

i nt nunDev; - Nunber of interface devices

i nt nunC dcMbd; - Nunber of CLDC-nodul es

i nt nunBSeqMod; - Nunber of sequencer-nodul es

i nt nunmAdcMod; - Nunber of ADC-nodul es

i nt numAcqMbd; - Nunber of acquisition nodul es*

int sim - Default operation in simulation node

int fitsBl ock; - Nunber of FITS-blocks to reserve for nmerging
int extFits; - Generate extended FI TS- header

int fileFormat; - Default file fornat

i nt nam ng; - Default nanming scheme

i nt oneFile; - Al inone file (FITS extension format only)
int autoOnline; - Go on-line after start-up

int autoStart; - Start at on-line

char detCfgFile[256]; - Default detector configuration file

char fil eNange[256]; - Optional filename

char dsup[256]; - Optional default paraneter setup file

int polling; - enabl e/ di sabl e polling of sub-system status

int polllnterval; - Polling interval in s

nterface device configuration structure ngcdcs_dev_cfg_t contains
ol

i
foll owi ng nenbers:

char name[128]; - Device nane

char env[32]; - Environment name

char host[64]; - Host where physical interface resides
char srv[64]; - Optional driver interface process nane
char type[32]; - Optional interface type

CLDC nodul e system configuration structure ngcdcs_cldc_cfg_t

contains the foll ow ng nenbers:

The

int devldx; - Device index

ngcb_route_t route; - Route to nodul e

i nt aut oEnabl e; - Enable at on-line

doubl e margi n; - Margin for voltage check (in volts)
double telenetryGin; - Gain factor for telemetry

char nane[64]; - Optional nane

sequencer mnodul e system configuration structure ngcdcs_seq_cfg_t

contains the foll owi ng nenbers:

i nt devl dx; - Device index
ngcb_route_t route; - Route to nodule
char namne[64]; - Optional nane

7

78

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

The ADC nodul e system configuration structure ngcdcs_adc_cfg_t

contains the foll owi ng nenbers:

i nt devl dx; - Device index

ngcb_route_t route; - Route to nodule

int num - Number of ADC groups on board

int bitPix; - Nunber of bits per pixel (16, 18, ...)
char name[64] ; - Optional nane

The acqui sition nodul e system configuration structure ngcdcs_acq_cfg_t

contains the follwing nenbers:

int crndPort; - Optional conmmand server port (default is zero)

i nt dataPort; - Optional data server port (default is zero)

int nunDat alli ent; - Nunber of data clients

int transferMode; - Data transfer node. Can be one of
ngcppTMODE_VIDEO - video transfer for RTD
ngcppTMODE_SCI ENCE - transfer to file

char host[64]; - Acqui sition process host

char dev[128]; - Acquisition process DVA device nane

int seqldx; - Associ at ed sequencer instance

See man page of ngcbl FC(4) for a definition of the ngcb_route_t structure.

The detector configuration structure ngcdcs_detcfg_t contains the

foll owi ng menbers:

char fileNane[256]; - Optional filenane for this
char dsup[256]; - Optional default paraneter setup file

Sequencer nodul e detector configuration:
ngcdcs_seq_dcf _t seq[ngcdcsCTRL_MAX_SEQ ;

CLDC nodul e detector configuration:

ngcdcs_cl dc_dcf _t cl dc[ngcdecsCTRL_MAX _CLDC] ;

ADC nodul e detector configuration:

ngcdcs_adc_dcf _t adc[ngcdcsCTRL_MAX_ADCMOD] ;

ngcdcs_chi p_t chi p[ngcdcsMAX_DET] ;
i nt nunDet ;

char nane[32];

char id[32];

i nt nunmQut put ;

int splitX ngcdcsMAX_ACQPRCC] ;

int splitY[ngcdcsMAX _ACQPRCC] ;
ngcdcs_rmt rnfngcdcsMAX_ RV ;

i nt nunReadMbd;

int rnDefaul t;

Chip information

Nunmber of detectors in npsaic
Det ect or system nane

Detector systemid

Total nunber of outputs
Split to FITS extensions
Split to FITS extensions
Read- out nodes

Number of read-out nodes

Def aul t read-out node

The sequencer nodul e detector configuration structure ngcdcs_seq_dcf _t

contains the foll ow ng nenbers:

char clkFile[256]; - Cdock pattern file to |oad
int tineFactor; - Default dwell-tinme factor
int tinmeAdd; - Default dwell-tinme add

i nt continuous; - Qperate in continuous node
int runCrl; - External run-control

The CLDC nodul e detector configuration structure ngcdcs_cl dc_dcf _t

contains the foll owi ng nenbers:

char vol tageFil e[256];

Voltage file to | oad

The ADC nodul e detector configuration structure ngcdcs_adc_dcf _t

contains the foll ow ng nenbers:

NGC Infrared DCS Design - 2.5

VLT-SPE-ESO-13660-3837

The
foll

The

i nt del ay;

doubl e of fset[32];

nt enabl e;
nt si m\/bde
nt opMbde;

nt packet Cnt;
nt convertl;
nt convert 2;

nt packet Si ze;

- Default conversion strobe del ay
- Default offset per group

- Number of enabled ADCs on board
- Sinul ation node

- Operation node

- Default packet size

- Default packet routing |length

- Conversion on strobe 1

- Conversion on strobe 2

read- out node definition structure ngcdcs_rmt contains the

owi ng nenbers:

char nane[64];

char desc| 256];

char seqgPrg[ngcdcsCTRL_MAX SEQ [256]; - Sequencer prograns

char acgProc[ngcdcsACQ MAX PRCC] [64]; - Processes for acquisition
nodul es

char dsup[256]; - Default paraneter setup file

int id; - Unique id

int hww n; - HWw ndow supported

chip info structure ngcdcs_chip_t contains the foll ow ng nmenbers:

int posX; X-position in nosaic

i nt posY; y-position in nosaic

int nx; x-di mension (in pixels)

int ny; y-di nension (in pixels)

i nt adj ust Mbde; W ndow adj ust nrent node (0=free, l=center,

i nt adj ustX; W ndow adj ustnent step in x-direction

int adjustY,; W ndow adj ustnent step in y-direction

int index; Uni que i ndex

doubl e pi xSpace;

doubl e pszx;
doubl e pszy;
doubl e xgap;
doubl e ygap;
doubl e rgap;

i nt rotAngle;
int live;

i nt nunQut put ;
char type[32];
char nane[32];
char id[32];
char date[16];
i nt acql dx;

ENVI RONMENT
The environnment variables INS ROOT and INS USER are used to build

the basic search paths ($I NS _ROOT/ $I NS_USER/ .

- Name
- Description

Pi xel to pixel space (neter)
Size of pixel in x (um

Size of pixel iny (um

Gap between chips along x (um
Gap between chips along y (um
Angl e of gap between chi ps (deg)

Rotati on angle of chip in nosaic (0, 90, 180, 270)

Detector live (=1) or broken (=0)
Nurmber of out put channel s

Detector type

Det ect or nane

Anot her detector identification string
Installation date [YYYY- MV DD|

Acqui si tion nmodul e i ndex

.) for configuration

files unless absolute paths are given. If the | NS_USER envi r onment

variable is not set,

RETURN VALUES
If not specified differently, all menber functions return SUCCESS

in case of success.

then the default value SYSTEMis assuned.

O herwi se FAILURE is returned and an error

is added to the error-stack.

SEE ALSO

ngcbl FC(4),
ngcbDl C(4),
ngcdcsACQ CLASS(4),

evhTASK(4)

ngcbl FC_MSE(4), ngcbPARAM 4), ngcbOBJ(4), ngcbMOD(4),
ngcdcsSEQO_ASS(4), ngcdcsCLDC_CLASS(4), ngcdcsADC_ CLASS(4),
ngcdcsAOQDATA_CLASS(4), ngcdcsCTRL_CLASS(4),

79

80 NGC Infrared DCS Design - 2.5 VLT-SPE-ESO-13660-3837

	1 INTRODUCTION
	1.1 Purpose
	1.2 Scope
	1.3 Applicable and Reference Documents
	1.4 Glossary
	1.5 Abbreviations and Acronyms

	2 OVERVIEW
	2.1 System Architecture
	2.2 Processes
	2.3 Software Modules
	2.4 Test Software

	3 CONTROL SERVER
	3.1 Database
	3.2 Server States
	3.3 Verbose Mode and Logging
	3.4 Error Handling
	3.5 Configuration
	3.5.1 Controller Electronics System Configuration
	3.5.2 Detector Configuration
	3.5.3 Directory Tree
	3.5.4 Configuration Modules

	3.6 Simulation Mode
	3.7 Parameter Setup
	3.8 Server Extensions
	3.9 Maintenance Mode

	4 EXPOSURES
	4.1 Read-Out Modes
	4.2 Frame Types
	4.3 Windows
	4.4 Burst Mode
	4.4.1 Raw Data Mode
	4.4.2 Internal Burst Mode

	4.5 File Formats
	4.6 Data File Naming
	4.7 Detector Mosaics
	4.8 Post-Processing
	4.9 Exposure Control
	4.10 Timing Accuracy
	4.11 Chopping Mode

	5 GRAPHICAL USER INTERFACE
	5.1 User Interface Classes
	5.2 Notebook Area
	5.3 Server Preferences and System Configuration

	6 TRACEABILITY MATRIX
	6.1 NGC Requirements from [AD6]
	6.2 NGC Software Requirements from [AD7]
	6.3 Adaptive Optics Requirements for NGC from [AD20]

	7 APPENDIX
	7.1 Database Classes
	7.1.1 Sequencer Class
	7.1.2 CLDC Class
	7.1.3 ADC Class
	7.1.4 Controller Base Class
	7.1.5 Acquisition Module Class
	7.1.6 System Status Class
	7.1.7 Exposure Class
	7.1.8 Read-Out Mode Definition Class
	7.1.9 Guiding Class
	7.1.10 Chopper Interface Class
	7.1.11 Server Class

	7.2 Reference
	7.2.1 ngcircon Server
	7.2.2 Command Definition Table
	7.2.3 Control Server Class

