EUROPEAN SOUTHERN OBSERVATORY

Organisation Européenne pour des Recherches Astronomiques dans I’'Hémisphére Austral

Europaische Organisation fur astronomische Forschung in der stdlichen Hemisphére

VERY LARGE TELESCOPE

r ESO New General Detector Controller B
Base Software
Design Description
Doc.No. VLT-SPE-ESO-13660-3836
Issue 2.4
L Date 25/05/07 N
J. St egnei er 25/ 05/ 07
PrEPAIEU ... e
Name Date Signature
D. Baade, G Finger
AAPPIOVEA. ...ttt bbbt
Name Date Signature
A. Moor wood
=] [=T= YT [T
Name Date Signature

VLT PROGRAMME * TELEPHONE: +49 89 32006-0 * FAX: +49 89 320 2362

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

Change Record

I ssue/Rev. Date Section/Page affected Reason/Initiation/Document/Remarks
01 30/11/05 All First preparation.
1.0 27/03/06 3 Added sections for testing, logging and error
handling. Newfigure for class structure.
4 Some issues for driver compilation and installa-
tion.
6.3.1 Added dwell-time modification flag to binary
clock pattern format.
9 Added traceability matrix.
10 Updated.
2.0 10/08/06 All Revised version.
21 30/08/06 6.6 New section added.
10 Updated man-pages.
2.2 03/01/07 All Aligned with new naming conventions.
10 Updated man-pages.
23 19/02/07 6.3 Some addtional script instructions.
7.3 Modified type definitions.
10 Updated man-pages.
2/4 25/05/07 10 Updated man-pages

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 5

TABLE OF CONTENTS

1 INTRODUCTION 9
L PUIPOSE .« ottt e e e 9

I o] o] o1 P 9

1.3 Applicable and Reference DOCUMENTS ittt e e e e e e 9
L4 GlOSSaIY . . oottt e e 9

1.5 Abbreviations and ACrONYIMSottt e 9

2 HARDWARE OVERVIEW 11
2.1 Detector FrONt EN o 11

2.2 Computing ArChiteCtUre.o e e e e 12
2.3 Communication Protocol 12
2.4 Voltage Programming.ttt e e e 13
2.5 SeqUeNCEr Programimingvt ittt 13
2.5.1 Clock Pattern RAM 13

2.5.2 Sequencer Program RAM. 14

2.6 Sequencer Control 15

2.7 SYNChIrONIZatioN 15

3 SOFTWARE ARCHITECTURE 17
3.l HIErarChy ..o 17
3.2 Software Modules 18
3.3 TSt SOt ANE 18

34 Class STIUCTUIE . . . ottt e e e e e e 18

3.5 Verbose Mode and LOQQiNg. oo vttt e 20
3.6 ErrorHandling. 20

4 DEVICE DRIVER 23
4.1 NGC Communication Channel 23
4.2 DMA Data ACqUISITIONo 23
4.3 COMMANGS . . .ot 25
4.4 Driver Interface Libraries 27

5 NGC INTERFACE CLASS 29
51 Interface Base Class. i 29

5.2 Interface INnstantiation o 31
53 NGC SIMUIator Classt e e 31

6 NGC SOFTWARE CLASSES 33
6.1 Module Base Class. 33

6.2 Parameter Model 34

6.3 Sequencer Module Class.t e 35
6.3.1 Clock Pattern Setup.o 35

6.3.2 SeqUENCEN PrOgram . ..ttt e e e 38

8

1

1

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

6.3.3 Sequencer CoNtrol i 43
6.3.4 SYNChronization 43
6.4 CLDC Module Classo e 44
6.5 ADC MOAUIe Classoi i 46
6.6 SeItESt 46
6.7 Configuration Modules. 46
DATA PRE-PROCESSING 47
Tl CONCEP .t 47
7.1.1 Parallel Computing Architecture i 47
7.1.2 Priority Controlled Scheduling 48
7.1.3 The Threads-Model. e 50
7.2 The ACQUISITION PrOCESSt e e e 50
721 Initialization 51
7.2.2 EXporting Parameters 51
7.2.3 Frame TY DS . . ottt e e e e 52
724 ACQUISITION LOOP . . . oo 53
7.25 Data Transfer 54
7.2.6 Importing Data-Setst 54
T.2.7 PixXel SOrtingoo i 55
728 RUN-TIMEFIAgS . ..o e e 56
7.2.9 Simulation Mode 56
7.3 Acquisition Process Interface 56
7.3 1 Datalnterface.ot 56
7.3.2 Data EXPOrt. ... 59
7.3.3 The Acquisition Module Class. i e 59
MAINTENANCE SERVER 61
TRACEABILITY MATRIX 1
1.1 NGC Requirements from [ADG]t 1
1.2 NGC Software Requirements from [AD7] 10
1.3 Adaptive Optics Requirements for NGC from [AD20] 14
APPENDIX 1
1.1 ngcb2Drv - Command Definition Table. 1
1.2 NgCODIVCOM. . . 4
1.3 NQCODIVDMa . .. 5
L4 NQCBPIIO. ... 7
15 ngebThread o 7
1.6 NQCDSeM . 8
17 nNCgbTHREAD Class.o e e e e e 11
1.8 NQCOSEM Classo 14
1.9 NQCOPARAM Class. . . oot 16
110 NQCBIFC Classo 20

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 7

1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21

NGCDIFC_MSG ClaSso e 24
NOCOSIM Classo 25
NOCONET Class. e 28
NGCDOBI ClaSso 30
NGCOMOD _CLASS . . . 32
NOCACSCLDC CLASS . e 34
NOCACSSEQ _CLASS . . e 38
NOCACSAD C _CLASS . 44
NGCACSACQ _DATA _CLASS. . 47
NOCACSACQ _CLASS . o e e e 51
NOCACSCT RL _C L ASS . e e 57

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 9

1 INTRODUCTION

1.1 Purpose

The document describes the design of a common base software for the ESO New General detector
Controller (NGC). It addresses to the hardware developer in the lab, to the detector specialist, to all
instrument users including those of external consortia and to all software developers designing ap-
plications based on NGC.

1.2 Scope

The new general detector controller will be used for both optical and infrared applications. While
the low level interfacing to the controller is the same in both cases, there are a lot of differences con-
cerning how the controller is actually used. This especially concerns data pre-processing and expo-
sure handling. The base software shall provide a transparent implementation of the NGC hardware
modules, giving access through software functions to all features provided by the NGC and still
leaving full freedom in the applicable range of the NGC detector front end. The application specific
parts are described in the design documents [RD10] (optical) and [RD11] (infrared).

The scope of this document covers all NGC software functionality, which can be used in all cases,
even though this does not mean that all of this functionality finally will be used in all specific appli-
cations. Especially the parallel pre-processing software (section 7) may be used where required,
while for less challenging tasks a more simple approach may be adequate to avoid overkill solu-
tions and to ease software maintenance.

Although not being part of the software design, there is a short overview of the NGC hardware, but
only to an extend of what is required to understand the software methods. A detailed description of
the hardware is given in [RD15].

1.3 Applicable and Reference Documents

All applicable and reference documents are listed in the “NGC Project Documentation” document,
VLT-LIS-ESO-13660-3906.

1.4 Glossary

See NGC Project Glossary [AD63].

1.5 Abbreviations and Acronyms

See NGC Project Acronyms [AD64].

10 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 11

2 HARDWARE OVERVIEW

The NGC hardware consists of a modular assembly of back-end and detector front-end modules.
The back-end module is a PCI-Bus interface card connecting the local control and data acquisition
computer (NGC-LCU) to the front-end modules which are creating and receiving the detector sig-
nals. The hardware module providing the clock timings is called sequencer. The hardware module
providing the needed clock voltage levels and the additional detector biases is called CLDC. The
hardware module doing the analog to digital conversion of the detector data is called ADC module.
Data and control signals between back-end and front-end are on fiber-optic link(s) with transmis-
sion rates of 2.5 GBit. Detailed descriptions of the hardware modules functionality are given in
[ADS].

2.1 Detector Front End

The detector front-end consists of at least one main-board and an arbitrary number of additional
boards. The boards may contain only a sequencer-/CLDC-module or only an ADC-module (con-
verting the detector output signals) or possibly any combination of those. The number of ADCs on
each ADC-module is also configurable. The boards are linked together in a network-like structure
(see Figure 1). Current hardware only supports linear chains (i.e. header 0x5).

Each board is equipped with a temperature sensor, which can be read-out through a dedicated reg-
ister. Each board also provides through register value(s) its own serial-number, a product code and
a revision number.

— = hdr =0x5
hdr =0x2 hdr =0x5
hdr =0x6 hdr =0x2 hdr ZOx6
r =0x
Sequencer I hdr =0x7 Sequencer dr —ox
cLbe I CLDC I
hdr =0x8 hdr =08
ADC System r=ox
Register ADC Igggggtrgr

| hdr =0x5

hdr =0x2
hdr =0x6
Sequencer I hdr =0x7
CLDC

hdr =0x8
ADC I System
Register

Figure 1 NGC Hardware

12 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

2.2 Computing Architecture

The NGC will be controlled remotely from an instrument workstation (IWS). The physical interface
to the hardware (PCI-Bus back-end card) resides in a local computer (NGC-LCU), which is also used
for the data acquisition and pre-processing. Currently the local computer is a PC running a Linux
operating system (kernel 2.4 or higher). In case the maximum nesting depth inside the NGC module
network has been reached, the system needs to be accessed through additional PCI-Bus back-end
cards. This may imply the usage of more than one NGC-LCU, also in case the computing or pe-
ripheral bus bandwidth of the NGC-LCU is not sufficient. So the configuration range covers a sim-
ple system controlling one detector via one PCI-Bus interface card as well as large detector mosaics
distributing their data via a huge number of channels among several computers.

LAN
NGC-LCU1
-~ NGC- —
PCI-Bus Network
Interfaces
- - @
IWS
I— NGC- —
Network
@<—
NGC-LCU2 DEj)
v NGC- —
Interfaces Network
~ @<
NGC- —
Network
@

Figure 2 Computing Architecture

2.3 Communication Protocol

The communication between back-end and front-end modules is based on packet transmission over
serial links. A packet structure is defined to address a function (i.e. a register or memory in a front-
end module) for reading or writing. The package is first sent to the back-end transmitter-FIFO and
then the transmission is activated upon raising a run-bit in the back-end control register. A packet
which has reached its destination is acknowledged in the back-end status register as soon as the ad-
dressed function has been executed. In case of a “read” operation the acknowledge is sent once the
requested data is available in the back-end receiver-FIFO. This limits the size of a single read/write
operation to the size of the transfer FIFOs.

A package consists of a number of headers in the range of [0x2 to 0x8] followed by the address to
write to or to read from, followed by a command code (write = 0x0, read = 0x8000000). In case of a
write operation a number of data words up to FIFO size can be appended. In case of a read opera-
tion the command code is or’ed with the number of data words to be read.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 13

Write data to address

I ... | DATA| DATA| 0x0| ADDR| HEADERn| . . . | HEADER2| HEADER | I
Read data from address ’
| | 0x80000000 + si ze| ADDR| HEADERn| . . . | HEADER2| HEADER| |

Figure 3 Packet Structure

The packet follows the route through the front-end network as described by the headers until head-
er 0x2 or header 0x8 is reached. Header 0x5, 0x6, 0x7 lead to the next board connected on the associ-
ated link. Header 0x2 means, that a function on this board is addressed. Header 0x8 addresses the
configuration register on this board (for resetting or link configuration). The configuration register
is write-only and does not send an acknowledge back. The header 0x8 is directly followed by the
register value (no address, no command code) and therefore it is an exception in the protocol.

2.4 Voltage Programming

The CLDC module is able to drive 16 clock- and 20 bias voltages (bias 17 to 20 are reserved for high
voltages). The voltages are set via two 14-bit DAC modules. Each DAC module houses 32 output
channels and one programmable negative offset. The channels of the first DAC lead to clock low
and clock high of the 16 clocks (pairs to clock low and impairs to clock high). The 20 bias voltages
are generated by the first 20 channels of the second DAC module. There are two clock monitor out-
puts on the module. The two clocks to be monitored can be selected via a two registers. There is also
a programmable monitor for the video channels on the ADC module. A voltage telemetry of the
DAC channels can be done with 16 bit accuracy. The channel to be measured is selected via a regis-
ter. An A/D conversion is done upon a write to the telemetry channel register. Afterwards the con-
verted 16-bit data can be read from the telemetry data register. Special telemetry channels are
foreseen to perform bias voltage current measurements.

2.5 Sequencer Programming

The NGC sequencer configuration is divided into two parts: clock pattern setup and sequencer pro-
gram.

251 Clock Pattern RAM

The clock patterns are stored in the sequencer pattern RAM. The size of the pattern RAM is 2 x 2048
x 32 bits, which can be divided into an arbitrary number of patterns. The RAM is organized in two
blocks: low-RAM and high-RAM. The low-RAM contains clocks 1 to 32, the high-RAM contains the
convert pulse, some utility signals and special flags marking break-points, “wait for trigger” state-
ments or “end of program”/”’end of pattern”. Each word in the low-RAM together with the corre-
sponding word in the high-RAM forms one sequencer state. The duration time of the state (dwell
time) is given in ticks in 16 bits (12 to 27) of the high-RAM word. Some bits in the high-RAM word
are foreseen to disable for each individual state a contiguous sections of clock- and/or utility-sig-
nals (i.e. the signals remain in their current state until they are enabled again).

14 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

252 Sequencer Program RAM

The sequencer program consisting of LOOP- and pattern EXEC-tokens is stored in the sequencer
program RAM. The main entry point is the first instruction stored in the program RAM base ad-
dress. The RAM can be freely divided into subroutines accessed via a JUMP-SUBROUTINE (JSR)
token. The program pointer jumps back from the sub-routine to the calling address when reaching a
RETURN-token. The subroutines help to keep the required program memory small, as repeating
parts do not need to be resolved each time they appear in the program loop.

Each word in the RAM consists of a 3-bit command token, an 11-bit address and a 16-bit repetition
counter. 2-bits are reserved for expansion of the address range or further command tokens. The ad-
dress field is only used for the EXEC- and JSR-tokens. The addresses are relative to the low/high
RAM (EXEC-token) respectively to the sequencer program RAM (JSR-token). The 16-bit repetition
counter is only valid for LOOP- end EXEC-tokens, otherwise it should be set to zero. For infinite
loops a special LOOP INFINITE token is reserved. The program runs until it reaches a PROGRAM
END token or until it is interrupted via a command sent to the sequencer control register.

Sequencer Program RAM

BIT 10..0 Pattern Address/ Subroutine Address

BIT 26..11 Repetition Counter

BIT 27 reserved

BIT 30..28 Token

BIT 31 reserved

Sequencer Program Tokens (Bit 30..28)

000 PROGRAM END

001 EXEC pattern

010 LOOP

011 LOOP END

100 LOOP INFINITE

101 JSR (jump to subroutine)
110 RETURN (from subroutine)
111 reserved

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 15

2.6 Sequencer Control

The sequencer is started by setting either the start bit or the start-sync bit in the sequencer control
register. If the start-sync bit is used, then the synchronous start signal is raised and all sequencer in-
stances will be started synchronously unless they have the external-run-control disable bit set in their
control register. This also applies to the initiating sequencer (i.e. the sequencer may raise the start-
sync bit but not start itself when the external run-control is disabled). The normal start-bit will al-
ways start the sequencer, even if external run-control is disabled.

The sequencer stops after the dwell time of the pattern currently executed in the following cases:

= The address FIFO becomes empty (error condition).
= The stop bit is set in the sequencer control register.
= A PROGRAM END token is executed.

= The break bit is set in the sequencer control register and a pattern state is executed, which has
also the break bit set in its high RAM word. The reaching of such a break point can be traced
by polling the sequencer status register.

2.7 Synchronization

The program execution is suspended when a pattern state was executed, which had the “wait for
trigger bit” set in its high RAM word, and the trigger mode is enabled in the sequencer control regis-
ter. Program execution is resumed upon the reception of the external trigger signal or when the trig-
ger bit is set by software in the sequencer control register. By using the “wait for-trigger bit” it is
possible to synchronize detector read-outs with external events or also to synchronize programs
running on multiple sequencer modules with high accuracy. The external trigger signal has to be
generated by an external dedicated hardware. Using the VLT TIM for this purpose allows external-
ly controlled timings which are synchronous with the VLT time reference signal. As the “wait for
trigger” state can also be disabled by setting the trigger-mode bit in the sequencer control register to
zero, it is possible to run exactly the same clock pattern sequence either continuously or triggered
externally.

Some signal lines in the sequencer clock pattern RAM can be used to create feed-back signals (“end
of read-out”) to in turn trigger external devices.

16 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

3 SOFTWARE ARCHITECTURE

3.1 Hierarchy

The software can be classified hierarchically as shown in Figure 4.

Control-Server
Level

Controller
Interface
Level

Acquisition
Process

Graphical User Interface |

StartAcquisition()
StopAcquisition()
Requestimage()
Receivelmage()

T

CaptureData()
ProcessData()

TransferData()

T

Driver
Interface
Level

SingleDmaRead()
ConfigureSustainedDma()
StartSustainedDma()
WaitForData()
AbortSustainedDma()
GetDmaStatus()

Driver Level

Data Acquisition

ConfigureSystem()
SetReadoutMode()
SetupExposure()
StartExposure()
AbortExposure()
CreateFitsFile()
UpdateDatabase()
Displaylmage()

SetVoltage()
ReadTelemetry()
EnableVoltageOutput()
SetClockPattern()
GetClockPattern()
StartSequencer()
StopSequencer()
EnableAdc()/DisableAdc()

Reset()/Initialize()
SetTimeout()
ReadBuffer(address,buffer,size,...)
WriteBuffer(address,buffer,size,...)

open()
close()
read()
write()
ioctl()
mmap()

System
Communication

Figure 4 Software Hierarchy

18 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

3.2 Software Modules

All software modules are under CMM configuration control. The base software contains the follow-
ing software modules:

ngcdrv - The device driver for the PCI-Bus back-end card.

< ngcb - The NGC basic software module containing the driver interface library (ngcbDrv)
for communication and DMA, some basici/o tools, a portable threads- and
priority-control implementation and the C++ base classes for general system
access. This module also provides a hardware simulation mechanism for the NGC
controller (see section 5.3).

ngcpp - The DMA data-acquisition and pre-/processing module.

ngcdcs The NGC detector control software base module implementing the classes for the

NGC hardware modules and the interfaces to the data acquisition (Figure 5).

A dictionary, which is common to both infrared and optical systems, is stored in the dicNGC soft-
ware module.

The software module ngcarch provides automatic installation procedures for all the mentioned soft-
ware modules (see Figure 6).

3.3 Test Software

Test scripts for the TAT (see [RD41]) are developed in parallel to the software module code genera-
tion. Test configuration files are created for various virtual system architectures and detector assem-
blies to cover all possible ranges of complexity. The DMA data-acquisition and pre-/processing
module ngcpp does not contain TAT test scripts, but fully working test/template acquisition pro-
cesses instead, which are then embedded in the test scripts and test configuration files of the higher
level ngcdcs module.

3.4 Class Structure

The Sequencer-, CLDC- and ADC- hardware modules are modelled in the ngcdcs software module
as C++ objects (ngcdcsSEQ, ngedecsCLDC, ngedcsADC). They all inherit from a base module class
(ngcbMOD, see 6.1), which keeps the physical interface (ngcblFC, see 5.1) including the route to the
module. Hardware simulation is implemented via a simulator class (ngchSIM, see 5.3), which is an
object within the ngcbIFC class. The ngecdcsCTRL class is a container class for all these hardware
modules. Interface classes for controlling the data acquisition process (ngcdcsACQ) and for the data
transfer (ngcdcsACQ_DATA) are also part of the ngcdcs module. The ngcbOBJ class is a base class
unifying some common tasks for the controller classes and the acquisition module classes.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

19

AY
ngcbSIM 1
/

Il

«
ngcbIFC_MSG | [ngebIFC_XXX |

Inherits from

—

Instantiates

|ngcdcsCLDC|'|-| | ngcdésSEQ |'|-| | ngcdcsADC |'|-| | ngcd(;sACQ |'|-|

Lrw Lx4 1x ¥ 1> N
AR ! i e
~ 1 . - Vi
S N] PRe //

~ I _- ,
ngcdcsCTRL 7
~ /7
~ /7
7/
~ ‘/
| ngedcsSRV/EVH

Figure 5 Class Structure

ngch
ngcbDry
ngcbIFC, ngcbSIM
ngcbOBJ
ngcbMOD
ngcbTHREAD,...

P

ngepp ngcdic

~ 7

ngcdcs
.SEQ
..CLDC
.ADC

..ACQ_DATA
wACQ

..EVH
Server

(infrared speV

ngcir... ngco...

~N

ngcarch

(optical specific)

Depends on
—

Figure 6 Module dependencies

20 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

3.5 Verbose Mode and Logging

Verbose messages can be printed on the standard output stream of each process. The detail is given
by a verbose level, which is also passed as parameter to the respective sub-processes. To make the
messages of the sub-processes visible, it is required to start those processes in a separate terminal.

Error - logging will be done with the standard CCS error logging facility, which includes the auto-
matic logs like tracing of any received/sent command (see [AD27], [RD32]). Additionally the ver-
bose output can be logged in a detail depending on a given log-level for maintenance/debugging
purposes. Operational logs are TBD.

3.6 Error Handling

The CCS error mechanism [RD32] provides a classification scheme for application specific errors.
The NGC base software uses this mechanism. The introduction of new error codes is limited to cas-
es, where specific actions (“reset”, “restart server”, “restart CCS environment”, “reboot” etc.) are re-
quired. Other errors, which leave the system still in a valid state without further interaction
(“parameter out of range”, “invalid file name”,..) are trapped by an overall system error
(ngcbhERR_SYSTEM, ngcdcsERR_SYSTEM) plus an appropriate message string. The meaning of the
error class and the possibly needed interactions are described in a help file (.hlp), which can be dis-
played with the standard CCS-tools (also with the logMonitor). The actual error reason (“timeout”,

“link channel error”,...) is given in an associated error message string.

Error Severity Description
NngchERR_SYSTEM Warning General error of informative character (“parameter out of
range”, “invalid file name”, etc.).

NgcbERR_| O Serious An |/O-error on the interface to the detector front end
occurred. Typically thiswill require at least areset or a
power-cycle of the NGC hardware to recover.

NngchERR_SRV Serious The communication with the driver interface process has
failed. The server may have died or the message system/net-
work is down.

NgcbERR INI'T Serious The server initialization failed. The message system may

not be up, or the operating system has run out of its
resources. This may require arestart of the environment or
even areboot of the IWS/NGC-LCU.

ngcbERR_WARNI NG Warning A warning which has only very limited effect on the further
system behaviour.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 21

Error Severity Description

ngcbERR DB_READ Serious Error when reading from the online database. This may
require arebuild of the database and arestart of the CCS
environment.

ngchERR_DB_VRI TE Serious Error when writing to the online database. This may require
arebuild of the database and arestart of the CCS environ-
ment.

ngchERR DB_INIT Serious Error when reading from or writing to the online database
during initialization phase. Thismay require arebuild of the
database and a restart of the CCS environment.

Error Severity Description

ngcdcsERR_SYSTEM Warning General error of informative character (“ parameter out of
range”, “invalid file name”, etc.)

ngcdcsERR | O Serious An 1/O-error on the interface to the detector front end
occurred. Typically thiswill require at least areset or a
power-cycle of the NGC hardware to recover.

ngcdcsERR_INIT Serious The server initialization failed. The message system may
not be up, or the operating system has run out of its
resources. Thismay require arestart of the environment or
even areboot of the IWS/NGC-LCU.

ngcdcsERR_WARNI NG Warning | A warning which hasonly very limited effect on the further
system behaviour.

ngcdcsERR_FATAL Fatal An error which cannot be recovered in any case.
ngcdcsERR DB_READ Serious Error when reading from the online database. This may
require arebuild of the database and a restart of the CCS
environment.
ngcdcsERR DB _VRI TE Serious Error when writing to the online database. This may require

arebuild of the database and a restart of the CCS environ-
ment.

22 NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

Error

Severity

Description

ngcdcsERR DB_INI'T

Serious

Error when reading from or writing to the online database
during initialization phase. Thismay require arebuild of the
database and a restart of the CCS environment.

ngcdcsERR_ACQ |1 O

Serious

An 1/O-error occurred when communicating with the acqui-
sition process. The process may have died or the network
connection to the NGC-LCU may be broken.

ngcdcsERR_ACQ OVERRUN

Serious

The acquisition process was not able to process the datain
time. All dataare buffered in aring-buffer to compensate
operating system gitters. If data are coming in faster than
they can be processed for alonger period, then the ring-
buffer may overrun. Either read-out slower or add sufficient
delays between the readouts.

ngcdcsERR_ACQ OVERFLOW

Serious

The data on the physical NGC-data link are coming in
faster, than they can be delivered to the computer bus. The
internal FIFOs on the interface boards become full in this
case. Thisisahardware error. The reason may be for exam-
ple crosstalk/spikes on the physical communication lines.

ngcdcsERR_EXP_I O

Serious

An error occurred during data taking. The data connection
to the acquisition process may be broken (process has died
or network is down).

ngcdcsERR_EXP_FI LE

Serious

An error occurred when writing the exposure datato afile
on the disk. The disk may be full or the directory can no
more be accessed.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 23

4 DEVICE DRIVER

The PCI-Bus back-end card is the interface between the NGC detector front-end and the PCI-Bus on
the NGC-LCU. It provides both a communication channel (COM-port) for setup and status com-
mands and a high speed scatter/gather DMA channel for ring-buffered sustained data transfer. The
device driver for this module is delivered in the ngcdrv module. If no interface card is used (e.g.
software is used only for simulation purposes), then the device driver needs not to be installed.

The device driver supports Linux Kernel 2.4 and 2.6 (or later). The Makefile of the ngcdrv module
also takes care of the differences between Linux 2.4 and Linux 2.6 kernels. Compilation and installa-
tion can simply be done with “make all install” on both kernel version trees. A script to install
(ngcdrv_load) and to remove (ngcdrv_unload) the driver is part of the ngcdrv module. The install
script may be added to the Zetc/rc.local file to let the driver be loaded at boot time. The compilation
and installation of the driver module has to be done as user “root” on a directory which is local on
the target computer. Path and environment need to be reset to the root home session.

CAUTION: Use “rlogin $HOST -I root”, “telnet SHOST” or “su -7, to login as root. The frequently
used “su” (without “-”) does not setup a proper root session and the loading of the driver module
(ngcdrv_load) may fail with an error message indicating an “invalid module format™.

The device driver provides the standard system calls (open, close, read, write, ioctl, mmap) for sev-
eral instances (boards) installed on the host-computer. A channel to a device can be opened with
the open system call. The device name is typically “/dev/ngc<n>_com” for the communication chan-
nel and “/dev/ngc<n>_dma” for the DMA channel, whereby <n> is the instance number (starting
with 0) of the board.

(int) fd
(int) fd

open(“/dev/ ngc<n>_coni, O RDWR);
open(“/dev/ ngc<n>_dma”, O RDWR);

If the open call fails, a negative value is returned and the appropriate errno is set. The close system
call is used to close a channel to a device:

(int) status = close((int) fd);

The function returns 0 in case of successful operation. Otherwise a negative value is returned and
the appropriate errno is set.

The driver also supports the execution of a single DMA read. This transfer can be done through the
standard read system call.

4.1 NGC Communication Channel

The communication channel is operated through the read/write system calls. A timeout for these
operations can be specified via an ioctl command. The default timeout value is zero, which means
that the timeout is disabled. A reset of the target device can also be performed via ioctl. The read/
write is done using a polling mechanism.

4.2 DMA Data Acquisition

DMA transfers are done via scatter/gather lists. Large DMA transfers are cut into small pieces and
an array of DMA-descriptor blocks holds the address and the size for each part (see Figure 7). The
last entry in a descriptor block contains the address and the flags of the next descriptor to be loaded
into a DMA Descriptor Address Register. The flags contain information about the direction of the

24 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

transfer (Local Bus to PCI Bus or vice versa) and whether an interrupt should be generated after the
transfer or not. An ‘end-of-chain’ flag marks the end of the list. A sustained mode (ring buffer mode)
is possible by setting the address of the first descriptor in the ‘next descriptor address’ field of the last
descriptor in the chain (without setting the ‘end-of-chain’ flag). If a ring-buffer consist of N elements
specified by the calling application, the driver would divide each element into smaller pieces of
DMA. An interrupt is only generated when the last piece for one ring-buffer element has been trans-
ferred. The actual layout of the scatter/gather list is fully transparent to the user.

DMA Descriptor Address Register

Next Descriptor Address | Flags

\—» First Descriptor

_ »| PCI-Bus Address of DMA Buffer

7/ Local Bus Address

/ Transfer Size

/ Next Descriptor Address | Flags

| \\> Second Descriptor

PCI-Bus Address of DMA Buffer

Local Bus Address

| Transfer Size

Next Descriptor Address | Flags

\ :
\ \» . Last Descriptor
\

PCI-Bus Address of DMA Buffer

\
N\ Local Bus Address
\ -
N\ \(Continuous Mode) Transfer Size
N - Next Descriptor Address | Flags

- P ¥l
~ _—

Interrupt (End of Transfer)

Figure 7

The DMA memory is allocated by the driver in kernel space and the corresponding pages are

mapped into the user space via the mmap system call. First the driver is told via an ioctl system call
how many ring-buffer elements to allocate in kernel space:

ngcdrv_ring_t ring;

ring. nbuf
ring.size

<nunber of buffers>;
<si ze of each buffer>;

ioctl ((int) fd, NGCDRV_DVA CFG BUF, (void *)&ring);

Then the memory has to be mapped into the user space via the mmap system call. The number of
ring-buffer elements actually allocated might differ from the value passed to the driver. Therefore

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 25

the value returned in the ring-structure must be used for the mapping:
(void *)mapArea = mmap(0, (int)(ring.size*ring.nbuf), PROT_READ, MAP_SHARED, (int)fd, 0);

The function returns a (virtually) contiguous memory area holding the specified number of ring-
buffer elements or MAP_FAILED if an error has occurred. The user space buffers are then obtained
in the following way:

i f (mapArea != MAP_FAI LED)

o

int i;

mapSi ze = ring.size * ring.nbuf;

for(i=0;i<ring.nbuf;i++)
{
buffer[i] = (char *)(nmapArea + (i * ring.size));
}

}

The memory is released in the user space by un-mapping the reserved area:
if (mapSize > 0)
{
munmap(mapArea, mapSi ze);
}
The buffer addresses should be set to NULL afterwards:
for (i=0;i<ring.nbuf;i++)

{
buffer[i] = (char *)NULL

}

4.3 Commands
The ioctl system call is used to send a command to a device:
(int) status = ioctl((int) fd, (int) conmand, [(void *)argunent]);
The function returns 0 in case of successful operation. Otherwise -1 is returned and the appropriate

errno is set. The following ioctl commands are supported by the device driver. The command liter-
als are defined in the device driver header file (ngcdrv.h).

= NGCDRV_PCFG_GET reads a register value from the PCI configuration space;
The argument is a pointer to an ngcdrv_param_t structure:

unsigned int reg; - not used
unsi gned int value; - returns the register value
unsigned int offset; - PCl configuration address

= NGCDRV_PCFG_SET sets a register value in the PCI configuration space;
The argument is a pointer to an ngcdrv_param_t structure:

unsigned int reg; - not used
unsi gned int value; - register value

26

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

unsigned int offset; - PCl configuration address

NGCDRV_CFG_GET reads a register value from the device configuration space;
The argument is a pointer to an ngcdrv_param_t structure:

unsigned int reg; - not used
unsigned int value; - returns the register value
unsigned int offset; - offset from configuration base address

NGCDRV_CFG_SET sets a register value in the device configuration space;
The argument is a pointer to an ngcdrv_param_t structure:

unsigned int reg; - not used
unsigned int value; - register value
unsigned int offset; - offset from configuration base address

NGCDRV_COM_RESET resets the target device and clears the COM-port FIFOs;
No argument.

NGCDRV_COM_TMO sets a timeout for subsequent read/write calls on a COM-port device;

The argument is a pointer to an unsigned int specifying the timeout in seconds. The default
value is zero, which means that the timeout is disabled.

NGCDRV_DMA_RESET resets (clears) the DMA data FIFO;
No argument.

NGCDRV_DMA_CFG_BUF configures the ring-buffer mode on a DMA device (Linux only);
The argument is a pointer to an ngcdrv_ring_t structure:

unsi gned int nbuf; - nunber of ring-buffer elenents
unsi gned | ong si ze; - size (in bytes) of each buffer

This command is only valid when using the Linux operating system.

NGCDRV_DMA_START starts a continuous ring-buffered scatter-gather DMA,
No argument.

NGCDRV_DMA_WAIT waits for the next ring-buffer interrupt;

No argument. The interrupts are buffered internally. If the calling function has missed an
interrupt, the ioctl call returns immediately.

NGCDRV_DMA DONECOUNT returns the current buffer counter;

The argument is a pointer to an unsigned int containing the current buffer counter. The counter
is initialized to zero with the NGCDRV_DMA_START ioctl command. It wraps with the range
of an unsigned 32-Bit integer.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 27

 NGCDRV_DMA _BYTECOUNT returns the number of bytes left in the current DMA,

The argument is a pointer to an unsigned int containing the current byte counter. Currently
this functionality is not supported by the device hardware.

= NGCDRV_DMA_ABORT aborts a sustained ring-buffered scatter-gather DMA;
No argument.

= NGCDRV_DMA_OVERFLOW checks the DMA-FIFO full flag;

The argument is a pointer to an unsigned int returning a non zero value if the DMA input FIFO
became full. The input FIFO full flag is cleared with an NGCDRV_DMA_START ioctl
command or when a single DMA read is performed.

4.4 Driver Interface Libraries

The driver functionality is assembled in a driver interface library (ngcbDrv) consisting of two major
parts for the communication with the system (ngcbDrvCom) and the DMA data-acquisition (ngch-
DrvDma). This library is intended to give a stable procedural interface to the driver, while the de-
vice driver itself is subject to updates forced by changes in the peripheral buses and or by new
kernel versions or operating system patches. See sections 1.2 and 1.3 for an overview of the sup-
plied functions. The “ngcbAddr.h” header file contains all information concerning register addresses
and bit-masks for register contents.

28 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 29

5 NGC INTERFACE CLASS

On top of the device driver interface library (ngcbDrv) the NGC interface class is intended to pro-
vide the basic entry point for the C++ programmer.

51 Interface Base Class

The physical interface is represented in the ngcblFC class. The class provides methods for opening/
closing/resetting the device and for writing data to an address or reading data from an address of a
modaule function in an NGC front-end network which is connected through this interface. All NGC
registers/memory can be accessed by calls to the ReadAddr(), WriteAddr() member functions. The
ngcblFC class hides all implementation details, which can be customized by overloading the Open(),
Close(), Reset(), ReadAddr(), WriteAddr() methods. The intention is to have a transparent representa-
tion of these methods, regardless whether they are called locally on the NGC-LCU or remotely on
the IWS (Figure 8), which in the latter case would implement these functions as a network protocol
within a client/server environment. In case the NGC is controlled remotely from the IWS, the driv-
er interface process running on the NGC-LCU is a lightweight process, which needs to support only
a very limited set of commands like ONLINE (open device), STANDBY (close device), RESET,
RDADDR (read from address), WRADDR (write to address), regardless of the complexity of the de-
tector front-end system behind and regardless of the complexity of the executed function. In case
the software has to be ported to whatever protocol, only the ngcblFC_XXX class and the command
handler of the driver interface process have to be replaced, while all higher level functionality can
remain untouched. The methods will take care of byte-swapping between big endian and little en-
dian computing architectures and will keep all device handles (such as file descriptors, message
queues etc.) internal. So the task for the instantiating application is reduced to its actual basic func-
tion, which is read/write access to addresses in the NGC detector front end.

Running locally on NGC-LCU

ControlServer:

interface->ReadAddr()
interface->WriteAddr()

Device
Running locally on NGC-LCU
Running somewhere
ControlServer: DriverInterfaceProcess XXX:

interface->Read Addr()
interface->WriteAddr()

interface->ReadAddr()
ngcblFC_XXX P Handle interface->WriteAddr()

Protocol_XXX Command ngcbIFC

Device
Driver

Figure 8 Interface Classes

The normal application will be to run the SW distributed on IWS/NGC-LCU. To run the control-

30 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

server locally on the NGC-LCU is mainly intended for HW-development and detector tests in the
laboratory, where one does not have access to an IWS in each particular case.

Two virtual methods (ExecServer()/KillServer()) are supplied to execute/Kill the driver interface pro-
cess in an application defined way. For the default local interface implemented by the ngcblFC class
these methods are empty. In case a driver interface process is used the Connect()/Disconnect() meth-
ods will instruct this process to open/close the connection to the physical device, while the Open()/
Close() methods will open/close a connection between control server and driver interface process. If
the interface is local, then the Connect()/Disconnect() methods are implemented just as Open()/
Close() calls. The convenience methods Online(), Standby() and Off() will take care to call the Exec-
Server()/KillServer(), Open()/Close() and Connect()/Disconnect() methods in the right way for switch-
ing the interface state regardless whether the physical interface is local or not. The method

i nt ReadAddr (ngcb_route_t route, int address, int *buffer, int size, int *result);
reads size 32-bit words from address into buffer. The method

int WiteAddr(ngcb_route_t route, int address, int *buffer, int size, int *result);
writes size 32-bit words from buffer to address.

The ngcb_route_t structure contains the following elements:

i nt nunHdr; - nunmber of headers to target including the termnating <0x2>
int hdr[ngcbMAX_MOD] ;- array of headers including the term nating <Ox2>

Both operations implement a 4-byte swap in case the calling computer has a big-endian architecture.
The methods take care of splitting up the operation into a sequence of read()/write() calls in case the
buffer size exceeds the maximum size for a single operation (Rx-/Tx-FIFO size, see section 2.3). The
result returns a 32-bit status word for the executed operation. An error string can be retrieved via the
Result2Err() method. The status word may have the following values:

ngcbRES_SUCCESS (0) - successful operation

Bit 0..7 contain the operation status byte (ngcbRES_ERR_IO bit is not set):

ngcbRES_OP_I| NVALI D - invalid address or function
ngcbRES_OP_FAI LURE - operation failed
ngcbRES_ERR HDR - wong header

ngcbRES_ERR ADDR - wong address

ngcbRES_ERR DATA - wong data

ngcbRES_ERR_XSI ZE - wong transfer size

ngcbRES_ERR_NOT_OPEN - device is not open

Bit 8..16 contain a combination of the following iZ0 error bits (ngcbRES_ERR_10 bit is set):

ngcbRES ERR | O - ilo error

ngcbRES_ERR_| NTR - i/ointerrupted
ngcbRES_ERR_OPEN - error opening device
ngcbRES _ERR RESET - error resetting device
ngcbRES _ERR TI MEQUT - i/o tineout
ngcbRES ERR LI NK_DOM - |ink channel down
ngcbRES ERR LI NK HARD - |ink channel hard error

ngcbRES ERR LI NK_SOFT - |ink channel soft error

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 31

5.2 Interface Instantiation

The interface is constructed by passing a name-string as constructor-argument. Then it can be
opened and closed by calling the Open()/Close() methods with no argument. The method
Open(name) will also open the interface, but additionally it sets a new name. The name is identical to
the device name in case the interface is local. For interfaces using a driver interface process, the
name is an application specific string passing the information needed to start the process on the ap-
propriate computer. Typically the string is formed out of the host name, the environment name and
the server name, where the latter may be set to a hard coded default server name when the field is
missing. The driver interface process may require certain command line arguments (this could be
the device name of the physical interface device). The Arg() methods returns a pointer to a string,
which is intended to be passed to the process as command line within the ExecServer() method.

This instantiation scheme is not obligatory, as the Open()/Close() and ExecServer()/KillServer() meth-
ods may handle this in an arbitrary way. The basic ngcblFC_MSG class delivered with the ngcb
module uses this scheme for a client/server implementation based on the CCS-message system
[AD25]. The driver interface process (ngch2Drv) running locally on the NGC-LCU is based on the
EVH-toolkit (see [RD33] and [RD35].

Running locally on NGC-LCU
ControlServer:
interface->ReadAddr()
interface->WriteAddr()
Device
ngcbIFC Driver
Running somewhere Running locally on NGC-LCU
ControlServer: /" ngcb2Drv:
interface->ReadAddr()
interface->WriteAddr()
{-‘ interface->ReadAddr()
> Handle interface->WriteAddr() 5o
- Command evice
CCS Message ngcblFC Driver
System

Figure 9 Interface Instantiation

5.3 NGC Simulator Class

The hardware simulation should be done at the lowest possible level to allow all higher level soft-
ware functions to be tested without having access to the physical device. The IRACE approach (see
[RD16]) was to have a dedicated simulator process playing the role of the electronics. Instead of
writing the messages to the device driver, the i/0 was done through socket communication with
this simulator process. Although this is the maximum level of separation, the introduction of pure
simulation specific administrative functionality (process startup, two-way protocol conversion...)
imposes an unwanted heaviness to this solution. In FIERA (see [RD15]), a first approach also had
been to have a process simulating the detector, with the drawback that often the real code and the
simulation code were misaligned. For this reason, the dedicated process playing the role of the elec-

32 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

tronics has been soon removed. The different processes directly simulated the command execution
timing before replying to the higher level software, assuming a successful execution of the com-
mand by the electronics.

The NGC hardware simulation is done through a C++ class (ngcbhSIM), which is directly instantiat-
ed in the ngcblIFC class. This object-oriented approach still provides a good level of separation, but
avoids the additional protocol conversion effort. The only costs are a few conditional statements
around the basic calls to the driver interface library functions, switching between the “real” read()/
write() functions and the ngchSIM::Read()/ngchSIM::Write() member functions of the simulator class.

An instance of the ngcbSIM class is created inside the (local) ngcblFC interface class when calling the
Sim() member function with the argument ‘1’. In case of a non-local interface the simulation flag has
to be propagated to the driver interface process via a command (SIMULAT/STOPSIM), which
would instruct the process to call the Sim() method on its local ngcblFC instance.

The simulator configures itself dynamically via the system headers sent with the write() system call.
A new simulator object is created recursively for every NGC hardware module defined via the link
configuration register (header 0x8). It provides all NGC hardware registers including sequencer pat-
tern- and program-RAM. The voltage setting is sloped to the telemetry values via the DAC - ADC
conversion function. The message packets are routed to the right destination instance using the in-
formation in the routing headers. The result is automatically passed back recursively to the main en-
try point (first ngcbSIM instance). The synchronous sequencer start signal (physically on an external
line) is propagated to all ngcbSIM instances. Time-outs and errors can be emulated by accessing un-
used addresses at any module instance:

ngcbTESTERR _NO_ACK (0x100) - no acknow edge

NgcbTESTERR | VLD (0x104) -invalid address

ngcbTESTERR _SEQ EMPTY (0x200) - sequencer FIFO becones enpty

NngchbTESTERR_SEQ | DLE (0x201) - sequencer goes to |IDLE state (sequence has term -
nat ed)

Further error cases may be added (TBD).

Once verified the ngchbSIM class allows all software including the ngcblFC class itself to be fully test-
ed in simulation mode.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 33

6 NGC SOFTWARE CLASSES

6.1 Module Base Class

The NGC detector front-end is modular in a sense, that it might consist of an arbitrary number of
sequencers, CLDC modules and ADC modules which are linked together in a network-like struc-
ture. To realize this modularity also in the controlling software all hardware modules are imple-
mented in an object oriented way using C++ classes.

All hardware modules have in common, that their registers are accessed via a chain of headers lead-
ing from one physical board to the other. To access a function on a certain hardware module, one al-
ways needs to specify the register address of the function and the route of headers leading to
physical board where the module resides. For large systems it will be required to spread the system
control among several PCI-Bus interface cards on the same or even on different hosting computers.
To support also these architectures, the hardware modules have additionally to be addressed via
both the ngcbIFC object (through which this part of the front-end is accessed) and the chain of head-
ers (route) leading to the module. The hardware module base class (hgcbMOD) is constructed with
the arguments (ngcbl FC *i nterface, ngcb_route_t route). The sequencer-, CLDC- and
ADC classes all derive from this hardware module base class and from now on their individual
functions can be easily modelled using simple ReadAddr()/WriteAddr() calls with the only argu-
ments addr ess and data[].

ngcblFC *myDevice = new ngcblFC(deviceName); /7* or: new ngcblFC_XXX(deviceName) */
ngcb_route_t route = {3, {Ox5, 0x6, 0x2}};

ngcdcsSEQ *mySequencer = new ngcdcsSEQ(myDevice, route);

(mySequencer->Star©

ngcbMOD::WriteAddr(0x6000, 0x1))

Q,(myDevice»WriteAddr(route, 0x6000, 0x1)>

(,,CngchomWrite(myDevice->fiIeDescriptor, (char *)(int []){0x5, 0x6, 0x2, 0x0, 0x6000, 0x1}, 6, errMsg))

write(myDevice->fileDescriptor, (char *)(int []){0x5, 0x6, 0x2, 0x0, 0x6000, 0x1}, 6);
/* check status and error conditions */
/* fill errMsg, if operation failed */

Figure 10 Module Function Call

The board temperature of each hardware module can be retrieved using the Temperature() member
function. The Initialize() member function reads all relevant board information (serial number,
product code, revision) from the hardware. The product information is stored in public data mem-
bers and can be used to introduce revision specific behavior to the derived classes.

34 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

6.2 Parameter Model

In the NGC base software a parameter class (ngcbPARAM) is defined in order to associate specific
behavior of the sequencer and acquisition modules to the setting of a parameter value. The parame-
ter storage type is given in the constructor. A Set() method exists for all common types to set a new
value. The class takes care for all possible type conversions. An internal flag traces all parameter
changes. The Get() method always returns a formatted string value. The class contains the following
public data members:

char name[64]; - parameter name

char alias[64]; - one alias name for the parameter

char format[16]; - format for output of the Get(),ValString() methods.

int fits; - flag to put the parameter into the FITS-header

char comment[44]; - optional comment for FITS-header

char unit([8]; - optional unit string

int flag; - storage space for application specific flags (initial value is 0)

int ctriList; - controller modules (sequencer), where the parameter is used. This is a bit-list main-
taining up to 32 controller modules (bit 0 for 1st. module, bit 1 for 2nd. module and
SO on).

int acqList; - acquisition-processes, where the parameter is used. This is a bit-list maintaining up

to 32 acquisition processes (bit 0 for 1st. module, bit 1 for 2nd. module and so on).

The bit-lists (ctriList, acqList) of a parameter help to decide whether the sequencer has to be reloaded
or not after a new setup or whether for example the acquisition process has to be re-synchronized
(see sections 6.3 and 7.2.2). The format, unit, fits and comment data members are intended to be im-
ported from dictionaries by the using applications (control server).

The parameters are maintained in a dynamic linked list (ngcoPARAM_LIST class). Parameters can
be added and removed with the Add()/Remove() member functions. The list is always NULL-termi-
nated. In order to walk through the list one can use the following construct:

for (I=list.First();!!=(ngcbPARAM LI ST *) NULL; | =I - >next)
{
ngcbPARAM *p = | - >par am
printf("% = 9% % %\n", p->name, p->CGet(), p->Vallnt(), p->ValFloat());
}

There are two convenience member functions to clear the instance bits of a sequencer module or of
an acquisition module from all parameters in the list: ClrCtriList(instance) and ClrAcqgList(instance). If
both bit-lists are zero (empty), then the parameter is automatically removed from the parameter list.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 35

6.3 Sequencer Module Class

The ngcdcsSEQ class provides all functions to setup and control a sequencer module.

6.3.1 Clock Pattern Setup

A local copy of the sequencer clock pattern RAM can be accessed directly through the public data
member

ngcdcs_pat _t *pattern;

which is an array of ngcdcsSEQ_MAX_PAT patterns of type ngcdes_pat_t. Each ngcdcs_pat_t object
contains the following members:

int addr; - address (relative to RAM base)
ngcdcs_pat _st_t state[ngcbhSEQ MAX STATES] ;- states

i nt nuntt at es; - nunber of states in this pattern

int tine; - clock pattern execution time in ticks
char nane[128]; - pattern nane

The ngcdces_pat_st object contains the following members:

int |ow - pattern | ow

int high; - pattern high

int tine; - pattern dwell tine x clock (50ns)
int nod; - allow global dwell tine nodification

Convenience functions to initialize such a pattern, to compute its execution time, to upload it to the
physical sequencer memory etc. are also part of the ngcdcsSEQ object.

By default the sequencer module contains two uploading methods for clock pattern definitions
(classification will be done via filename extensions like for example ".clk", ".bclk" etc.):

= A low-level binary structured format referring to the sequencer pattern RAM directly. This
allows complete clock patterns to be produced by an external tool in case the output format of
this tool can be adapted to our needs. Here the aim is to have the simplest possible format (still
readable but not intended to be edited by hand).

= A more user-friendly ASCII description (short FITS format), which can be edited directly by
hand. Here the aim is to have the best readable format. As this description already may contain
complex instructions, it is not intended to be the output of another higher level tool.

= Other formats can be implement by adding specific uploading methods.

It should always be possible to modify the dwell time of the states within a pattern via a global mul-
tiplication factor (i.e. multiply every state length by a factor of 2,3,4,...). However some critical states
like the length of a conversation pulse may have to remain static. A state-length modification flag
needs to be introduced to mark states to be modified by the global multiplicand.

36

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

Binary structured clock-pattern setup (.bclk):

<Pattern-1>

1
0b00000000000000000001000000000000
0b00000000000000000001000000000000
0b00000000000000000001000000000000
0b00000000000000000001000000000000
0b00000000000000000001000000000000

0b10000000000000000001000000000000
!

<Pattern-3>

3
0b00000000000000000011000000000000
0b00000000000000000011000000000000
0b00000000000000000011000000000000
0b00000000000000000011000000000000
0b00000000000000000011000000000000

0b10000000000000000011000000000000
!

0b00000000000000000000000100000000
0b00000000000000000000000100000000
0b00000000000000000000000000000001
0b00000000000000000000000000000001
0b00000000000000000000000100000000
0b00000000000000000000000100000000

0b00000000000000000000000000000010
0b00000000000000000000000000000010
0b00000000000000000000000000000110
0b00000000000000000000000000000110
0b00000000000000000000000000000010
0b00000000000000000000000000000010

Low Word

P OOORPK

P OORRE

H gh Wrd | Mod. - Fl ag

In the ASCII format described below the DET.PATI index directly gives the pattern reference index
to be used in the sequencer program ASCII description (see section 6.3.2). The uploading method al-
ways has to take care of filling in the correct pattern address for each pattern object.

The clock-pattern description block may consist of up to 64 state-vectors (one for each bit in the se-
guencer clock-pattern RAM). In order not to specify a huge number of unused clocks, a clock map-
ping vector can be specified, which maps logical clocks described in the file onto physical clock
lines. Clocks without map reference can also be addressed directly by their number (for example
“DET.PATIi.CLK62™).

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

37

Clock-pattern ASCII description (.clk):

HHEHEHEH R AR S B AR R AR AR R R R R R R R R R R AR AR AR AR R R
E.S.O - VLT project

#

#@# $ds

jstegnei 2005-09-05 created

#

P G A M G G L A G A M G L S G
DESCRI PTI ON

Exanple ASCI| FILE for NGC sequencer clock pattern definitions.

P G A M G G L A G A M G L S G

C ock mapping (can be spread over several |ines).

This maps the cl ocks descri bed bel ow onto physical clock |ines.
Mechanismis: Phys. clock line for logical clock n = MAP[n].
DET. CLK. MAP1 "1, 2, 3, 33"; # Mapping |i st

DET. CLK. MAP2 " 37, 4"; # Mapping |ist

Clock pattern definitions

DET. PAT1. NAME " Del ay";
DET. PAT1. NSTAT 5;

DET. PAT1. CLK1 "00000";
DET. PAT1. CLK2 "00000";
DET. PAT1. CLK3 "00000";
DET. PAT1. CLK4 "00000"; # Convert

DET. PAT1. CLK5 "00000"; # Start pul se
DET. PAT1. CLK6 "00000";

DET. PAT1. DTV "2,2,2,2,2";

2 Dwel | - Ti me vector
DET. PAT1.DTM "0, 0,0, 0, 0";

#
Dwel | -Time nodification flags
DET. PAT2. NAME "FraneStart";

DET. PAT2. NSTAT 4;

DET. PAT2. CLK1 " 0000";

DET. PAT2. CLK2 "0000";

DET. PAT2. CLK3 "0000";

DET. PAT2. CLK4 "0000"; # Convert

DET. PAT2. CLK5 "0110"; # Start pul se

DET. PAT2. CLK6 " 0000";

DET. PAT2. DTV "5,5,5,5"; # Dwel | - Ti me vector

DET. PAT2. DTM "1,1,1,1"; # Dwel | -Time nodification flags

DET. PAT3. NAME " Read";
DET. PAT3. NSTAT 4;

DET. PAT3. CLK1 "0000";
DET. PAT3. CLK2 "0000";
DET. PAT3. CLK3 " 0000";

DET. PAT3. CLK4 "0110"; # Convert

DET. PAT3. CLK5 " 0000"; # Start pul se

DET. PAT3. CLK6 "0000";

DET. PAT3. DTV "5,5,5,5"; # Dwel | - Ti me vector

DET. PAT3.DTM "1,1,1,1"; # Dwel | -Tinme nodification flags

up to ngcdcsSEQ MAX PAT (=2048) clock patterns in this format...

38 NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

Three cases may arise when configuring the sequencer clock-patterns in the way described above:

a)

b)

c)

test.clk

test X.bclk

ngcdcsSEQ CLASS

UploadASCII()
UploadBin()

ngcdcsSEQ CLASS

UploadASCII()
UploadBin()

a ngcdesSEQ_Y CLASS N

ngcdcsSEQ CLASS

UploadASCII()
UploadBin()

test_Y.y_out

p UploadFormat_Y()

\

6.3.2 Sequencer Program

The sequencer program may depend on an application specific set of parameters (like detector inte-
gration time, number of samples, window parameters...), which at runtime are only known to the
detector control server. In the simplest case these parameters directly fit into the repetition counters

of the LOOP and EXEC instructions:

LOOP $DET. NREADS

EXEC <1_second_del ay_pattern> $DET. EXPTI ME
EXEC <readout _pattern> 1

END

Other applications may need to compute the repetition counters via arithmetic formulas:

N = $DET. NREADS * $DET. NCYCLES;

LOOP $N

EXEC <1_second_del ay_pattern> $DET. EXPTI ME
EXEC <readout _pattern> 1

END

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 39

The detector readout will typically not consist of a single pattern, but of another piece of sequencer
program code which is assembled in a sub-routine:

N = $DET. NREADS * $DET. NCYCLES
NX1 = $DET. NX / $DET. NCHANNELS

LOOP $N
EXEC <1_second_del ay_pattern_1s> $DET. EXPTI ME
JSR <readout >

END

RETUI RN

<r eadout >:
LOOP $DET. NY
EXEC <line_start_pattern> 1
EXEC <sanpl e_pattern> $NX1
END
RETURN

The next level of complexity is reached, when the computed parameters depend on the execution
time of such a sub-routine:

DET. NREADS * $DET. NCYCLES
= $DET. NX / $DET. NCHANNELS

N
NX
T_DELAY = (($DET. EXPTIME / $N) - Tinme(<readout>)) * 10.0e9

%I—‘II

LOOP $N
EXEC <10_nanosecond_del ay_pattern> $T_DELAY
JSR <readout >

END

RETURN

<r eadout >:
LOOP $DET. NY
EXEC <line_start_pattern> 1
EXEC <sanpl e_pattern> $NX1
END
RETURN

The arithmetic formulas may use conditional instructions to compute results depending on the set-
ting of logical parameters. It is also required that some of the computed parameters are passed back
to the server. For example the “actual” exposure time or the “minimum” detector integration time
can only be determined within this programming context, as arbitrary constant delays may be add-
ed such as chopper transition time or fixed delays after detector reset.

The evaluation of arithmetic formulas at run-time should be implemented via a simple scripting
language. As the script evaluation may need to be done frequently, the startup-overhead of the
script must be as short as possible. For the current implementation the TCL scripting language has
been chosen, as this is the current VLT software standard and the startup overhead is very short.
The script evaluation may not be required by all applications. In particular this is a main difference
between optical and infrared applications. Where no script is required a simple parsing can be
done. To optimize for both needs, a hybrid sequencer program format is used. The script evaluation
between the SCRIPT/SCRIPT_END instructions can simply be skipped (as in the testl.seq exam-

ple).

The clock patterns given as argument to an EXEC instruction are referred to by their reference in-
dex. The mapping to their actual clock pattern RAM address is done internally by the uploading

40 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

method of the clock pattern configuration (see section 6.3.1).

Sequencer program ASCII description:

PAT_A =1 testl. seq:
PAT B = 2
PAT C = 3 PAT D = 4
PAT E =5
USE PARAML PARAMP PAT F = 6
USE PARAMB PARAM4
EXEC PAT_D
SUBRT routinel routine2 LOOP 10

JSR nyRouti nel

SCRI PT LOOP 5

if {$svar (PARAMA)} { EXEC PAT_E 4

set svar(newl) [expr{$svar (PARAM) * END
($time_r(routinel) + END
$time_r(routine2))}] RETURN

} else {

set svar(newl) [expr{$svar (PARAML) * myRout i nel:
$time_p(PAT_A)}] LOOP 3

}
SCRI PT_END

EXEC PAT_F 10
END

RETURN
EXEC PAT_A $PARAML
LOOP I NFI NI TE
JSR routinel 3
LOOP $PARAM2
LOOP $newl
EXEC PAT_B
END
END
JSR routine2
END
EXEC PAT_A 1
RETURN

routinel:

LOOP $PARAMB
EXEC PAT C 4

END

RETURN

routine2:
| NCLUDE "testl.seq"

The parameters defined via the USE statements, the execution times of the subroutines defined via
the SUBRT statements and the script code itself are passed to the script interpreter through stdin.
Once the script code had been executed the (possibly updated) parameters are passed back through
stdout. The potentially used parameters are stored in an instance of the ngcbPARAM_LIST class (see
section 6.2). The list is passed to the ngcdcsSEQ class via the constructor. The ngcdcsSEQ class takes
care for attaching its own instance to the ctriList of all parameters which are declared in the USE
statement. The parameter list is intended to be maintained in a control server using instances of the
ngcdcsSEQ class for sequencer control. The list helps the server to optimize the frequency of se-
guencer program re-loads.

So finally the sequencer program consists of three parts: the declaration section, the evaluation sec-
tion and the actual program code. The declaration section contains the assignment of pattern names

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 41

to pattern numbers, the declaration of the used parameters and the declaration of subroutines. Nor-
mally subroutines need not to be declared. The SUBRT statement is only required in case the execu-
tion time of such a subroutine is needed in the evaluation section. The same applies to the
parameter list. Parameters which are not used in the script but which are directly referred in the
program code also need not to be declared. The evaluation section is enclosed with SCRIPT/
SCRIPT_END statement. The whole section can be skipped if it is not required. The evaluation sec-
tion is directly followed by the actual program code. Subroutines have to be labeled by a routine
name. The label is just the name followed by ‘:’. The loop repetition factors can be either a hardcod-
ed decimal value, the value of a parameter or INFINITE. A loop repetition factor evaluated to -1 is
the same as INFINITE, other negative values are illegal. The EXEC instruction is followed by two
arguments: the pattern number and also a repetition factor. Both can be hardcoded decimal values
or the values of a parameter. A repetition factor of 1 may be omitted. The pattern number can be re-
placed by its name when a name was assigned in the declaration section.

Decl arati on Secti on

<pattern_nane 1>
<pattern_nane 2>

<pattern_nunber 1>
<pattern_nunmber 2>

<pattern_name N> = <pattern_nunber N>

USE <par aneter_nane 1> <paraneter_nanme 2> ... <paraneter_name N>
USE ...

SUBRT <routine_nane 1> <routine_nanme 2> ... <routine_name N>
SUBRT ...

Eval uati on Secti on

SCRI PT

[SETLIB {myTcl Li b1 nmyTclLib2 ...}] # optional, can be used to enmbed own tcl-libraries
[Script Code]

paraneters are in $svar(parameter name)

subroutine execution tines (mlliseconds) are in $tine_r(routine_nane)

pattern execution tinmes (mlliseconds) are in $tinme_p(pattern_nane)

SCRI PT_END
Program Code

Nested Loops
LOOP <I NFI NI TE| repetition_factor| $paranmeter_nanme> [LOOP... ...END] END

Repeated Pattern Execution
EXEC <pattern_nane| pattern_nunber | $par anat er _nane> <repetition_factor| $paraneter_nane>

Junp to Subroutine
JSR <routine_nane> <repetition factor>

Include another programfile to this position
I NCLUDE <fil e_name>

Subroutine Label (Routine Nane)
<routi ne_nane>:

Return from Main Program or from Subroutine
RETURN

42 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

The JSR statement jumps to a subroutine given by its name. It may optionally be followed by a rep-
etition factor for repetitive calling of for example a “DELAY”-subroutine. The RETURN statement
returns from a subroutine to the position from where the subroutine has been called. A RETURN
statement in the main code (top level) will return from the whole program (exit).

The range of the counters of a LOOP construct is 16 bit integer [0, 65535]. The range of the “direct”
repetition factors of the EXEC and JSR instructions is 32-bit signed integer [0, 2147483647], as the di-
rect repetition factors are expanded internally to LOOP constructs.

This parameter driven program structure allows a wide range of application specific detector read-
outs (multiple configurable windows/regions of interest, configurable pixel sub-sampling, etc.).

For completeness the sequencer module also contains a simple uploading method for a binary se-
guencer program RAM description. Because of the required server interaction at run-time the appli-
cable range of this fixed format is limited.

Binary structured sequencer program (.bseq):

0x4000 # start address for this piece of code
0b00010000000000000000000000000001
0b01000000000000000000000000000001

0b00010000001000000000000000000001
0b00100000000000000000000001000000
0b00010000110000000000000000000001
0b00010000011000000000000000000001
0b00110000000000000000000000000001

0b00010000010000000000000000000001
0b00100000000000000000000001000000
0b00010000111000000000000000000001
0b00010000101000000000000001000000
0b00010001000000000000000000000001
0b00010000100000000000000001000000
0b00110000000000000000000000000001

0b00100000000000000000000000001010
0b00010000000000000000000000001010
0b00110000000000000000000000000001

0b00010000010000000000000000000001
0b00100000000000000000000001000000
0b00010000111000000000000000000001
0b00010000101000000000000001000000
0b00010001000000000000000000000001
0b00010000100000000000000001000000
0b00110000000000000000000000000001

0b00110000000000000000000000000001

A local copy of the sequencer program RAM can be accessed directly through the public data mem-
ber

ngcdcs_seqp_t program

which contains the following members:

int code[ngcbhSEQ RAM SI ZE] ; - sequencer program code
int |ength; - program code | ength
ngcdcs_subrt _t subRt[ngcdcsSEQ MAX SUBRT] ; - subroutines

i nt nunSubRt; - nunber of subroutines

int stored; - programstored in controller

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 43

The ngcdces_subrt_t object contains the following members:

int addr; - start address (relative to RAM base)
i nt index; - reference index

int |ength; - subroutine code length

doubl e time; - execution time in seconds

char name[128]; - subroutine nane (optional)

It is possible to modify the global program structure directly and then upload it via a SetupPrg()
method. The SetPrg(prg) method uploads an externally defined program and upon success the glo-
bal program structure would be a mirror of what has been loaded. The code may completely reside
in the main program code without having the subroutines resolved (numSubRt = 0). Otherwise the
subroutines are placed at the given addresses. Convenience methods are available for checking and
optimizing the code (CheckPrg(&prg)) and for calculating code execution times (ExecTime(code,size)).
The execution time calculation requires that the referred clock patterns have been uploaded before.

The program stored in the sequencer program RAM can be read back via a GetPrg(&prg) method.
The DumpPrg(text, prg) member function dumps the binary program code to a formatted ASCII text
of type (char *). The function automatically resolves subroutines and also calculates their execu-
tion times.

6.3.3 Sequencer Control

The sequencer can be started and stopped via the Start()/Stop() methods. The Start() method has a
parameter, which defines whether to raise the synchronous start signal or whether to start only this
instance (see section 2.6). A sequencer instance only goes to running state in case a sequencer pro-
gram has been loaded before. The synchronous start can be enabled or disabled with the RunCtrl()
method. The Stop() method will interrupt the program immediately. Sometimes it is required to
stop the pattern sequence only on dedicated break points. The break points are set in a bit in the
high RAM word of a clock-pattern state. The Break() method will instruct the sequencer to stop at
the next break point. The Wait() method will wait with a given timeout until the program has termi-
nated. A proper value for the timeout can be computed with a BreakTimeout() function, which will
also cover the case that the timeout may be infinite (no break point in the program) and only the
Stop() method can be used.

6.3.4 Synchronization

The synchronization mechanism with external events is described in section 2.7. It is fully under
control of the respective clock pattern design. The TriggerMode() function can be used to enable or
disable the “wait-for-trigger” state.

44 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

6.4 CLDC Module Class

The ngcdcsCLDC class provides all functions to setup the clock- and DC-bias voltages on a CLDC
module. The clock- and bias voltage setup can accessed through the public data members

ngcdcs_cl k_t *cl k; - array of clock voltages

int nund k; - nunber of clock voltages
ngcdcs_dc_t *dc; - array of bias voltages

int nunDc; - numnber of bias voltages

doubl e of fsetd k; - global offset for clock voltages
doubl e of f set Dc; - global offset for bias voltages

The ngcdcs_dc_t object contains the following members:

doubl e volt; - setup val ue

doubl e range[2]; - range

doubl e dacCorr; - DAC correction factor

doubl e tel Corr; - ADC correction factor for telenetry
i nt dacChan; - DAC channe

int tel Chan; - ADC channel for telenetry

char name[64]; - name of the bias voltage

The ngcdcs_clk_t object contains the following members:
ngcdcs_dc_t | evel [ngcdcsCLDC DCLK]; - nulti-level biases for each clock
The current hardware uses two-level clocks (ngedcsCLDC_DCLK = 2).

An overall configuration of all voltages on the CLDC module can be done via the LoadCfgFile()
method. The LoadCfgFile() method can be overloaded to support/test different kinds of setup files if
required. The LoadCfgFile() method is intended to fill the above structures. The Setup() method will
upload the structures to the controller. The SaveCfgFile() method will save the current setup to a file.
Also this method can be overloaded to create other formats than the default one. The default format
supported by the ngcdcsCLDC class is a short FITS format as shown below. The SaveCfgFile() meth-
od will keep all comments when saving a modified voltage setup to a file. The voltages can be
changed at run-time individually within their defined range. It is possible at any time to restore the
default values as they were given in the voltage configuration file originally loaded.

All voltages including the two global offsets can be set individually via member function calls. Volt-
age telemetry can be done at any time for one selected voltage. Two clock channels can be selected
via the Monitor() method to be routed to the two clock-monitor outputs of the board. A calibration
method (Calibrate()) can be called to compensate offset voltage errors on the individual DAC chan-
nels. The voltage output of the module can be enabled and disabled via the Enable()/Disable() meth-
ods. The voltage conversion functions ConvertDac() and ConvertTel() for the DAC and for the
telemetry can be overloaded to cover the needs for board modifications for special applications.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

45

Voltage definition file (.v):

HHHBHHBHHBHH BB B R R R H B R R R R R R H R
E.S.O - VLT project

#

#@# $lds

#

who when what
jstegnei 2005-10-05 created

#
BHAHHHARRHHHHBRRHHHH AR HHH BB HHA R HHHB R HH AR AR HHA R AR AR R

DESCRI PTI ON

NGC voltage file. The keywords have to be defined for all used
clock- and DC-voltages in the follow ng fornat:

#

DET. CLDC. CLKHI NM - Name of high clock i (optional)

DET. CLDC. CLKHI i - Level of high clock i (mandatory)
DET. CLDC. CLKHI GNi - Gain factor (optional)

DET. CLDC. CLKHI RAi - Range of |ow clock i (mandatory)

#

DET. CLDC. CLKLONM - Name of low clock i (optional)

DET. CLDC. CLKLG - Level of low clock i (mandatory)

DET. CLDC. CLKLOGNi - Gin factor (optional)

DET. CLDC. CLKLORAI - Range of low clock i (mandatory)

#

DET. CLDC. DCNM - Name of DC voltage i (optional)

DET. CLDC. DCi - Level of DC voltage i (mandatory)
DET. CLDC. DCGNi - Gain factor (optional)

DET. CLDC. DCRAI - Range for DC voltage i (mandatory)

BHHAHHHABHHHHHBRRHHHHA BRI HHH BB HHA R HHH AR HHA R AR R HHA AR AR R

O fsets:
DET. CLDC. CLKOFF 10. 0; # d obal clock voltage of fset
DET. CLDC. DCOFF 10. 0; # d obal DC voltage offset

Cl ock Vol tages:

DET. CLDC. CLKHINML ~ "cl k1Hi ";

DET. CLDC. CLKHI 1 3. 000;

DET. CLDC. CLKHI GN1 1. 000;

DET. CLDC. CLKHI RA1 "[-9. 000, 9.000]";

DET. CLDC. CLKLONML "cl klLo";

DET. CLDC. CLKLOL 0. 000;

DET. CLDC. CLKLOGN1 1. 000;

DET. CLDC. CLKLORAL "[-9.000, 9.000]";

up to 16 clock voltages like this ...

DC Vol t ages:

DET. CLDC. DCNML "DCL";

DET. CLDC. DC1 0. 000;

DET. CLDC. DCGNL 1. 0;

DET. CLDC. DCRA1 "[-9.000, 9.000]";

up to 20 DC-voltages like this ...

46 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

6.5 ADC Module Class

The ngcdcsADC class provides all functions to setup an ADC module. This class only contains some
setup functionalities to enable/disable ADCs on the board, to select a channel to be routed to the
video-monitor output of the board and to switch between the several available operation- and simu-
lation-modes. No separate configuration/setup file is required here, as the module configuration
(i.e. the number of enabled ADCs) is done within the scope of an overall system configuration (i.e.
where the boards, device names, routes and number of modules are defined). This overall system
configuration is outside the scope of this document, as there are huge differences between optical
and infrared applications.

6.6 Selftest

All hardware module classes provide a Selftest() method testing the hardware functionality to the
possible extend. The Selftest() method provides proper feed-back via the verbose-output and the log-
ging system (see section 3.5).

6.7 Configuration Modules

All configuration files for the NGC hardware modules (clock pattern definitions, sequencer pro-
grams, voltage configuration files) are intended to be stored in instrument- or detector-specific con-
figuration modules, which are under CMM configuration control. This also applies to maintenance
and test configurations. Usually the configuration files are part of the NGC-system delivery. In cases
where detector development is done outside, the respective instrumentation team is responsible for
the development of the configuration files. Templates and a graphical editing tool for the clock pat-
terns will be provided.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 47

7 DATA PRE-PROCESSING

7.1 Concept

Basically the pre-processing task to be performed is:

= Receive data from an external device. Generally this is achieved by writing the data from the
device directly to the computer memory (DMA) and generating an interrupt once a certain
amount of data had been transferred (data event). The data flow is continuous.

= Compute a data-array containing the result of the pre-processing - in the easiest case by sorting
and/or adding up several subsequent input arrays. The computation (“adding-up”, “sorting™)
must happen in parallel to the reception (DMA) of the next input data array. The algorithms
are manifold and need specific parameters to be defined at run-time (“number of input arrays
to add up”,...). There are no strict real-time requirements (i.e. guaranteed response time on a
data event), but the amount of data to be processed within a certain time-slot is huge (up to

several hundred Mega-Bytes).

= Transfer the result array to disk and/or to a display. The target disk and the display utility
usually reside on another computer (instrument workstation). Thus the transfer is done via a
network interface. The transfer of the result array must also happen in parallel to both
receiving and processing the next incoming data arrays (continuous data flow). Memory
copies have to be avoided.

The CPU speed and the bandwidth of peripheral buses on modern “standard” computers is in-
creasing steadily. The usage of an “off the shelve” computer plus operating system gives the oppor-
tunity to benefit from the rapid progress on the computer market and the wide range of available
development and debugging tools in combination with the least possible expense for portability is-
sues. The following sections describe how the described data acquisition task can be performed on
standard computers running a UNIX/Linux operating system as it is delivered with the ESO
VLTSW releases.

7.1.1 Parallel Computing Architecture

In order to improve the computing bandwidth, modern computers can be equipped with several
CPUs. When a process becomes runnable, the scheduler looks, which CPU is the least busy, and
then grants this CPU to the process. Once a process is running on a certain CPU, it will keep this
CPU until it is re-scheduled. Re-scheduling may occur either after a certain time-slot (in case other
processes are also runnable) or when the process has to wait (for example for a semaphore or for in-
put on a socket). When processing large data arrays, the computing task has to be distributed across
several processes to benefit from the multi-CPU architecture. In the simplest case with two CPUs
we would execute two processes, where one was processing the first half of the array while the oth-
er was processing the second half. The operating system always takes care of the optimal CPU
where to schedule a process. Once process-1 is scheduled on CPUL1, the process-2 will automatically
be scheduled on CPU2 (as now this is the least busy) without doing any further pre-selection. This
scheme will work unless there are no other processes with high CPU-needs running on the NGC-
LCU (see section 7.1.2 about how to avoid unwanted scheduling if this was the case). The two pro-
cesses have to be synchronized (i.e. they have both to be triggered when a new data-array is avail-
able for processing). This master task requires at least one more process. Once the processing is

48 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

done, the result still has to be transferred to give space for the next incoming data. The transfer of
the result data (to disk or to another computer) also has to be done in parallel to the processing of
the next set of input data and therefore also requires a separate process. Finally both data-processing
and data-transfer need some external input (commands) to be controlled (START, STOP) and to be
parametrized (SETUP). This command handling must react asynchronously at any time and is the
fifth process in our minimum configuration:

Result-Data

Computer
Memory

Command/Reply
(START/STOP/SETUP)

T

Command
Handler

Data Event (device driver signals, that
the data has been written to the computer’s
memory)

Process
Data 1

Trigger

Figure 11 Parallel Data Processing

7.1.2 Priority Controlled Scheduling

By default the UNIX model grants certain time-slots to each process to guarantee a fair distribution
of the computing resources. When the data processing approaches the limit of the CPUs bandwidth,
a priority scheme has to be assigned in order to avoid, that less important tasks interrupt the time-
critical tasks. For example the data transfer should just be done, when there is enough time to trans-
fer. In case the processing task adds up 10 data arrays to compute their average, the transfer task has
the time of 10 data events to transfer the average until the next result is available. In case of normal
time-sharing scheduling the transfer-task would immediately start running after the 10th array had
been processed and would compete with the processing-task for CPU-resources, where both would
be granted the same amount of CPU-power. This would result in a possible loss of input data, in
case the CPU-load of the processing task was more than 50%.

crash (no time left to handle next data event)
Processing-Task +‘\+‘\+‘\+‘\+‘\+‘\+‘\+‘\+‘\+‘\L&ﬂ

Transfer-Task -

l

\/

Figure 12 Non-priority-based scheduling

One possibility was to install as much physical CPUs as there are processes needed for the acquisi-
tion. For more complex processing tasks, requiring more than 2 processes (for example non-destruc-
tive read-out or computation of standard deviation), this would become expensive and would also
not put all of the CPUs to effective use (for the lower priority tasks). A better way to use the full
computing bandwidth of all installed CPUs is to assign a priority scheme to the processes:

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 49

SN £ 54 nnad pnnddnnnas nanassanatanatan B

Transfer-Task

-

Figure 13 Priority-based scheduling

The Linux operating system provides a soft real-time scheduling technique, which allows to run
processes with distinct priorities. The priority setting however requires super-user privileges. The
“sudo” command or a dedicated installation user with the appropriate access rights may be chosen
to overcome installation caveats.

The priority scheme introduces a further level of complexity into our process model, but gives more
control over the scheduling. Of course we want at least to be able to stop the system at any time.
This implies, that the command handling process has the highest priority in the system. The second
priority is given to the capture process, as this has to react in time to the data events. The next prior-
ity level is given to the tasks processing the raw data arrays. All other tasks have a low priority
sharing the remaining bandwidth.

Although this is not yet a full “real-time” system, the priority scheme guarantees a stable mean-pro-
cessing time which is sufficient for all image pre-processing done outside the very fast control loops
(e.g. as needed for adaptive optics). Jitters in the response time (latency) which are in the range of
several milliseconds can be overcome by implementing a ring-buffer of an appropriate size for the
incoming data.

The system interfaces to the outside world via two processes: the command handler and the trans-
fer task. The processing task is supposed to deliver different types of result-data (raw frames, aver-
aged frames, standard deviation,...). This means, that the receiving process has to decide, which
data it is interested in and so the transfer-task will transfer data only upon request. Although the re-
quest has the nature of a command,. it should not be handled by the command-handler, because in
this case it would be handled with the highest priority. As this is just what we intended to avoid, a
second “command handling” has to be implemented within the transfer task itself. The receiving
process can then start/stop/setup the system via a command sent to the command handler, but
will send data requests directly to the transfer task, which then only handles this request when
there is time to do so (the computed result data arrays will be queued up to a configurable size):

Receiver
Start/Stop/Setup

Handler

Figure 14 Data Transfer/Command Handling

50 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

7.1.3 The Threads-Model

Although the UNIX process model together with the IPC mechanisms is sufficient for parallelizing
the data acquisition, this is still heavy to handle, as all global variables have to reside in a shared
memory area, where the applications must take care to allocate and free space for all kinds of global
data structures. Furthermore the cleanup of this stuff after a process crash is a complex job for itself.
Linux, SUN Solaris and all POSIX-standard compliant UNIX releases support a programmatic inter-
face, which hides all of this implementation details from the programmer. This mechanism is called
multi-threading. A thread is in its functionality the same as a process. The difference is just, that threads
can run within one address space and can therefore use the same memory and global variables. A
main-thread is started like a process and then it starts in turn other threads for executing different jobs
in parallel on the same data. The threads model also includes several internal task-synchronization
features (mutexes, conditions, counting semaphores) which help to make the task-control more easy
to survey. Like a process a thread can also be executed with a distinct priority.

Multi-threading gives a clear performance improvement. A process has five fundamental parts: code
(“text™), data, stack, file 1/0, and signal tables. Processes have a significant amount of overhead
when switching: All the tables have to be flushed from the processor for each task switch. If a process
spawns a child process using fork(), the only part that is shared is the text. Threads reduce this over-
head by sharing the fundamental parts. Due to this mechanism switching happens much more fre-
guently and efficiently, which is essential for our parallel data acquisition task.

The usage of global data among several threads requires mutual exclusion mechanisms in order to
prevent, that for example the same variable is read and written at the same time or incremented/
decremented at the same time. A routine which takes care of this is called “thread-safe”. Thread safe-
ty can be achieved by protecting global variables and also the execution of code fragments with mu-
texes or semaphores. In many cases the mutual exclusion is just inherent in the functionality and can
be achieved by designing a proper task distribution.

Multi-threading is supported by Linux, SUN Solaris and all POSIX-standard compliant UNIX re-
leases. Applications based on this mechanism can very easily be ported to all of these operating sys-
tems. For simulation purposes the same acquisition process code may run on all development
computers. Together with the priority based scheduling feature the system balances itself making
maximum use of any number of CPUs installed. The same program, that at high data-rates would
spread itself across all available CPUs, can also run on a cheap single-CPU architecture, when only
low input data rates are expected. The whole data acquisition task can directly be started in one step
from a UNIX/Linux command shell without requiring any further startup-script and process moni-
toring.

7.2 The Acquisition Process

The acquisition processes can be started as individual tasks on the NGC-LCU (in simulation mode
also on the instrument workstation). The incoming data are read via DMA into a ringbuffer. The
capture process provides the synchronization between the DMA-driver and the calculation process.
A ringbuffer overflow is also detected by the capture process. After processing the data, the result
frame will also be stored in a ringbuffer to guarantee continuous data flow. Any data transfer is ful-
ly parallel to the processing loop (i.e. while transferring the result, the next result is computed).
There are no memory copies required. When the frame has been processed and should be trans-
ferred, it is given to the data server. From here the frames can be distributed in parallel to several
hosts via parallel data transfer threads. The frames are transferred on request. The request may be
FIFO (for science data transfer) or LIFO (for video data transfer). Different frame types can be trans-
ferred in parallel to different requesting data clients (i.e. the display shows raw frames while the av-
eraged frame is transferred and stored to a FITS-file). Using this method the transfer capacity is only

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 51

limited by the network bandwidth and the computing power of the requesting client process. It is
possible to download data sets like flatfields or bad-pixel masks. The data sets can be stored in
shared memory to be shared between acquisition processes. This acquisition process framework
provides a flexible mean to implement any kind of “on the fly” pre-processing (bias subtraction,
fast centroiding, digital filtering, handling of chopping and/or nodding cycles, etc.).

Usage: ngcppXXX [options]
Opti ons:
- enabl e interactive node
-im <input node> i nput node (nornmal, sim
(default: normal)
-cndport <port Nun» set comrand server port (default: 0)
-dataport <portnun> set data server port (default: 0)
-nclient <nunClient> max. nunber of data clients
(default: nunCient = 0)

-dev <n> <devi ce> devi ce nanme for device <n>
(default: /dev/ngcO_dma (device 0))

-st <tinme> simulation interval tine in s
(default: simulation tinme = 500 mns)

-V switch verbose node on

-h show this

If the ‘“-i’ option is not specified, the acquisition process starts the data capture and processing itself,
using the default parameter setting (auto-start). This mode is reserved for test purposes. For using a
command interface the acquisition process has to be invoked with the ‘-i’ option. Most acquisition
processes additionally support the command line options ‘-nx <n>’ and ‘-ny <n>’ from where they
derive the DMA size and the dimension of the produced data frames.

7.2.1 Initialization

The basic initialization of the DMA system is done via the ngcppStartup() function.
ngcppSt artup(argc, argv, size, ermns)

The command line arguments (argc, argv) of the process have to be passed to this routine, so that
some default stuff (such as device names) can be evaluated. The third argument defines the size (in
bytes) of one DMA ringbuffer element. The DMA size can be redefined within the scope of the ac-
quisition loop if required (see section 7.2.4), but only in case the DMA is stopped at that time.

7.2.2 Exporting Parameters

The acquisition process may need to be controlled through an arbitrary number of application spe-
cific parameters. These parameters need to be made public in order to be able to set them “by
name” through the command interface. A parameter structure myTYPE and an associated array of
parameter names have to be defined by the application. Afterwards the dynamic parameter struc-
ture has to be passed to the system. This is done via the ngcppSetupDynParam() function. Then some
default parameter values have to be set. The ngcppParamDefault() function informs the system, that
the default parameter setup has been done. Now the command handler is able to receive a double
buffered mirror of all parameters defined in myTYPE:

52 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

static char *nanes[]

1
—~

“ DET. MYFRAME”
“ DET. MYPARAML" ,
“ DET. MYPARAMRYS ",
“DET. SETUPI D' };
typedef struct
{

i nt myFrane;

i nt myParant;

fl oat myParan®;

int setupld;
} nyTYPE;

param = (nyTYPE *)ngcppSet upDynPar an{_vecsi ze(nanes), (char **)nanes, 0, erns))

/* Set default parameter values */
param >setupld = O;

param >nyFrame = 1;

par anmt >y Par ani 0;

par am >nyPar an? 1.5;

ngcppPar amDef aul t () ;

7.2.3 Frame Types

A data frame consists of a frame header and an output ringbuffer. With each frame a certain frame
type (DIT, INT, STDEV...) and a data type (integer, floating point,...) are associated. There are de-
fault frame types defined within the ngcpp module:

ngcppFRAME_SNAPSHOT - snapshot frame
ngcppFRAME_DIT - DIT-frame
ngcppFRAME_INT - INT-frame

NgcppFRAME_INTERMEDIATE_DIT - intermediate DIT-frame
NgCppFRAME_INTERMEDIATE_INT - intermediate INT-frame

ngcppFRAME_SDV - standard-deviation frame
ngcppFRAME_SAMPLE - sample frame
ngcppFRAME_HCYCLEL - first half-cycle frame
ngcppFRAME_HCYCLE2 - second half-cycle frame
ngcppFRAME_TRACK - vector for offset corrections

It is also possible to add new frame types to the system. The frame type has to be a single bit value.
The least significant bits are used for the pre-defined default frames. The first unused bit can be re-
trieved by defining myFRAME_TYPE in the following way:

#def i ne myFRAME_TYPE (ngcppFRAME_USER << 1)
To introduce a new frame type to the system, one has also to specify a frame name and a parameter
name (both ASCII-strings). If the parameter string is not empty, the specified parameter should be
used to switch the generation of the frame on/off:

ngcppAddFr ameType(myFRAVE_TYPE, “MYFRAME', “DET. NC. MYFRAME", er mrs)
Each frame has to be at least double-buffered. Science-frames (like the INT-frame), which have to be

stored in any case should have three ringbuffer elements (this depends on the expected computation
rate of the frame and the transfer time including storage on disk). The output ringbuffer has to be al-

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 53

located by the acquisition process. Then the frame has to be passed to the system:

static int *resMFrame[2]; /* data-ring buffer of my-frame */
static ngcppFRAME nyFrane; /* frame structure for nmy-frame */
int nunPix = nx * ny;

/* Allocate frame buffers */
for (i=0;i<2;i++)
{
resMyFranme[i]=(int *)malloc (nunPix * sizeof(int));

}

/* Initialize frame structures */

nyFrane. h.start_x = 0;

nmyFrane. h.start_y = 0;

nyFranme. h. nx = nx;

nyFrane. h. ny = ny;

nmyFrane. h. dtype = ngcppDTYPE_I NT32;

nyFrane. h. ftype = nyFRAME_TYPE;
ngcppl ni t Frane(&ryFranme, (char **)resMFranme, 2);

The ringbuffer element, that has to be used for processing the frame, is assigned by the system and
is always stored in the structure element myFrame.dptr. So all processing has to be done on resMy-
Frame[myFrame.dptr].

7.24 Acquisition Loop

After the initialization phase, the acquisition process has to wait for the start command with ngcpp-
WaitStart(). After receiving the start command, it can do some further initialization steps (such as
redefining the DMA size) and will then signal to the capture process, that the main process is now
ready to get data. The ngcppStartCapture() function will enter the DMA-loop. From now on all fur-
ther processing has to keep up with the incoming data flow. So the acquisition process should enter
the acquisition loop immediately. With ngcppWaitData() it waits for the next data buffer, processes
it and finally calls the acknowledge-function ngcppAckData(), when no more processing has to be
done with the current data buffer.

54 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

/* Main |oop */
whi | e(1)
{

active = 1;

/* Wit for start */
if (ngcppWaitStart() == -1) continue;

/* Some initialization if required (redefine DVA size, ...) */

/* Signal capture process, that process is ready to get data */
if (ngcppStartCapture() < 0) continue;

/* Acquisition loop */

while (active)
{
/* Get next data buffer */
ngcppWi t Dat a(dat al n) ;

/* Check, if stop signal has been received */
if (!(active = ngcppCheckStop())) continue;

/* Now process the data sonehow */
/* Transfer conputed data frames */

/* Let capture process know, that data has been processed */
ngcppAckDat a() ;
} /* end of acquisition |oop */

/* Term nate processing */
ngcppTer nProcessi ng() ;
ngcppFl ushQut put () ;

} /* end of main | oop */

7.2.5 Data Transfer
To transfer a data frame an output request function has to be called:

nmyFrane. h. setupld = param >set upl d;
ngcppReqQut (ngcppQUEUE_SKI P, &nyFrane) ;

The setupld header element is used by the receiving process to identify frames belonging to a certain
parameter setup. This is needed, as parameters may change, while the system is running.

The first argument of the ngcppReqOut() function is used to specify the behavior, when the output
ringbuffer of the frame is full. It has to be one of the following values:

ngcppQUEUE_SKIP - skip frame, if queue is full
ngcppQUEUE_BLOCK - block until queue is free
ngcppQUEUE_SETERR - set an error flag in the frame header and skip

7.2.6 Importing Data-Sets

The acquisition process has the possibility to reserve memory that can be filled from remote via the

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 55

command handler. This memory area(s) may contain flatfield(s), badpixel-mask(s) or other data
sets used for the pre-processing (or also the simulation) of image data. The buffer can be set from
the controlling process via the ngcppUploadBuf() function. As the reserved memory is double buff-
ered, the acquisition process would not block while an upload is in progress. Once all buffers are
set, a synchronization command ngcppMsync() has to be sent to the command handler to perform
the buffer swap. The memory areas can be placed in shared memory in order to be shared between
different acquisition processes.

#define nyDATA SET_ ID 4 /* has to be a single bit value */
char *nyDat aSet ;

ngcppShDat aAtt ch(0, erms);
ngcppShDat aGet Pt r ((char **) &yDat aSet, nyDATA SET_ID, size, ermns);
while (active)

{

ngcppWaitStart();

ngcppSt art Capt ure();

while (started)

{
ngcppWai t Dat a (&dat al n);

i f (ngcppShDat al sVal i d(nyDATA _SET I D)
{

/* process data frane: frane = f(dataln, nyDataSet) */

}
ngcppAckDat a() ;

}
ngcppTer nProcessi ng();

}

7.2.7 Pixel Sorting

The structures of the detector arrays differ a lot. Ordering can be in stripes, quadrants, quadrants
and stripes, from outside to inside or vice versa. The sorting and processing of the arrays might
make the parallel computation algorithms quite complex. For very large arrays, which do no more
fit into the cache, the sorting might additionally slow down the performance of the real-time loop. If
applicable the frames can be computed as raw unsorted buffers, which are reformatted just before
they are transferred. For this purpose a pixel map (ngcppPixMap) has to be defined. The ngcppPix-
Map is declared as NULL pointer by default. It is only applied if it points to a valid map. The acqui-
sition process can allocate an integer buffer with appropriate size and fill it with a sorting table.
Then the ngcppPixMap must be set to the defined map:

ngcppPi xMap = myMap;
The map will apply the following sorting:
out[i] = data[ngcppPi xMap[i]];

The transfer task also takes care of window requests. If a special frame should be transferred un-
sorted even though a pixel map has been defined, then the noSort flag must be set in the frame
structure when passing it to the output queue:

myFrame. noSort = 1;
ngcppReqQut (ngcppQUEUE_SKI P, &nyFrane);

56 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

7.2.8 Run-Time Flags

There are two global flags for exposure control. They are set asynchronously via the command inter-
preter task and can be checked at run-time within the acquisition loop. Both flags have to be reset by
the application after they have been checked.

The counter-reset flag (ngcppResetCnt) is set, when the exposure should (re-)start while the sequenc-
er is left running (continuous mode). Typically at this point the observing conditions have changed
(telescope move etc.). This means, that the DMA-input buffer has to be flushed ngcppFlushinput()
and the current integration has to be skipped. This has to be taken into account when estimating the
exposure time. In the worst case one integration is lost.

The exposure-end flag (ngcppEndFIg) is set, when the exposure should end immediately. Typically
now an intermediate result should be transferred.

7.2.9 Simulation Mode

The acquisition process has a built-in simulator. In simulation mode the input-ringbuffer is pre-
filled with default-data. The input sequence is simulated via timer functions (maximum resolution:
1 ms, maximum frequency: 100 Hz input-frame rate). The content of the data can be explicitly set by
defining a function of type:

static void simul (short **buf, int size, int num int *p)

This allows the application to fill the num ring-buffer elements with detector- and read-out mode-
specific data. The size gives the number of 16 bit data-words in each ring-buffer element. The pointer
“p” is reserved for future use.

Then the routine has to be assigned before the ngcppStartup() function is called:
ngcppSi nBuf = simul ;

If no buffer simulator is defined, a noise pattern will be used by default. It is also possible to upload
simulation data using the import mechanism described in section 7.2.6. As in that case simulation
data for all produced frame types need to be uploaded, the applicable range of this feature is limit-
ed.

7.3 Acquisition Process Interface

The previous sections have shown the principle of the acquisition process. Now we still have to pro-
vide an interface to send commands to the process and to receive data from it.

7.3.1 Data Interface

The data frames can be requested in parallel from the data transfer threads. This is needed, as the ac-
quisition process produces various different frame types and the frame type to be displayed (video-
data) and the frame type(s) to be stored on disk (science-data) are not necessarily the same. Even if
the user wants to get the same data both saved to disk and displayed in the RTD, then one still needs
parallel channels for smooth operations not blocking each other. The saving to disk may take longer
than the display (or vice versa), the display may run anywhere else (on a dedicated host) and finally
one always wants to display the most recent image while when saving to disk one needs the oldest
image, which has not yet been saved. If required due to performance reasons, the video transfer

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 57

(RTD) may be stopped while taking the science-data for an exposure.

The data transfer is done via socket (TCP/IP). The ngcppOpenDataLine() routine distinguishes be-
tween the video- and the science-data transfer. In science mode the oldest available, but not yet
transferred frame, which matches the frame-type in the request structure is transferred (FIFO). In
video-mode for each frame-type matching the request, the latest not yet transferred frame is select-
ed (LIFO). From this selection the oldest frame is transferred. In both cases ‘not yet transferred’
means, that the frame has not yet been transferred to the requesting client. In video-mode addition-
ally the retransmit flag in the request structure is checked, to allow frames of the specified type to
be transmitted again. This can be used, to display different windows of the same frame during long
integrations.

Format of the request structure:

typedef struct {

int type; /* requested frame type */

i nt bl ocki ng; /* block until frame is ready */
int retransmt; /* transfer last buffer again */
int start_x; /* window start-x */

int start_y; /* window start-y */

int nx; /* wi ndow nx */

int ny; /* window ny */

} ngcpp_req_t;

Format of the returned frame structure:

typedef struct {

int dtype; /* data type */

int ftype; /* frame type */

int start_x; /* wi ndow start-x */

int start_y; /* window start-y */

int nx; /* wi ndow nx */

int ny; /* wi ndow ny */

int scal; /* scale factor */

int cnt; /* frame counter */

int setupld; /* setup-id */

int err; /* error code */

int overrun; /* overrun flag */

int franes; /* available frame types */
int tx; /* track point x */

int ty; /* track point y */

fl oat expFactor; /* exposure time factor */
int reservedl; /* reserved */

int reserved2; /* reserved */

int reserved3; /* reserved */

int reserved4; /* reserved */

int reserved5; /* reserved */

} ngcpp_hdr_t;

58 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

The sequence for the function calls should be the following:

= ngcppPingDataLine() (optional);

= ngcppOpenDataline(serverName, &socket,...);
= ngcppSendDataRequest(socket, request,...);

= ngcppWaitDataReply(socket, &frameHeader...);

= Check frame header. The frame name can be resolved with the ngcppGetFrameNameByType()
function (optional);

« |f frame type is ngcppFRAME_NO_FRAME, then send a new data request. Otherwise do either
transfer the frame (the window parameters in the request may still be updated now) with
ngcppAcceptFrame(socket, request, &frame,...) or skip it with ngcppSkipFrame(socket,...);

= The frame can be scaled using the general ngcppScale(&frame) function (optional);
= Continue with ngcppSendDataRequest(socket, request);

The socket can be used for a select() call before ngcppWaitDataReply(). To cancel a request one has to
call ngcppCancelReq(socket, ...) before ngcppWaitDataReply() and then send a new request with
ngcppSendDataRequest().

If any of these functions fails, one should call ngcppCloseDataLine() and then try to reopen with ngcp-
pOpenDataLine() to recover the data channel from failure.

The calling program should not exit with an open request. When the process is waiting for the data
reply, ngcppAbortReq(serverName, pid,...) or ngcppCancelReq(socket,...) have to be called before exiting.
It is recommended to add ngcppAbortReq() or ngcppCancelReq() to a signal handler.

The ngcppAcceptFrameN(socket, request, &frame, partNo, numDiv, ...) function can be used instead of
ngcppAcceptData() to request a frame partition. The additional parameters partNo and numDiv have
to be supplied to indicate that the partition number partNo out of numDiv sub-divisions of the frame
has to be taken as base for the requested window.

The described functions are sufficient to receive data from the acquisition process. They can be used
for stand-alone applications (RTD-interface) or also for various test purposes. To get this interface
into the context as described in section 3.2, a more object oriented approach is needed. The
ngcdcsACQ_DATA class will assemble the functions into an object, which can be configured either
at creation time using the constructor or after creation using a Configure() method. The configura-
tion is store in the following members of the ngcdcs_acq_cfg_t structure:

i nt dataPort; - data server port
int transferMde; - data transfer node
char host[64]; - acquisition process host

Once configured a data connection can be established and closed with simple calls to the Open()/
Close() member functions. Then data can be requested, transferred, skipped or re-transmitted in a
flexible way using the class member functions. File descriptors and the request structure are stored
inside the object and are transparent to the applications using the object.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 59

7.3.2 Data Export

The acquisition process framework allows the export of data buffers for external processing (for ex-
ample with higher level image processing systems):

voi d ngcppDat aExport (void *buffer, int ftype, int bitPix, int nx, int ny)
With the appropriate counter-part in the data interface to be included by the used tool:

ngcppSI MPLE_HDR *ngcppl nmport Dat a(void **buffer, char *erns)
i nt ngcppReturnDat a(char *erns)

The installation, startup and task management for these external tools is outside the scope of this
framework. Generally this mechanism may introduce huge performance drops depending on the
interface of the used tool. The usage of a dedicated acquisition process to perform a raw-data burst
and an off-line processing with the respective tool should be taken into consideration before intro-
ducing this further complexity.

7.3.3 The Acquisition Module Class

The ngcdcsACQ class provides all functions to execute/Zkill an acquisition process on the NGC-
LCU. One instance of the ngcdcsACQ class has to be created to control one acquisition process. The
parameters exported by the process are attached to a global parameter list (hngcoPARAM_LIST, see
section 6.2), which is passed via the constructor. The class contains functions to maintain these pa-
rameters, to upload data sets, to switch between normal mode and simulation mode, to start/stop
the acquisition and to set the run-time flags (see section 7.2.8) at the proper time. The acquisition
modaule also creates an instance of the ngcdcsACQ_DATA class in order to receive data from the
launched process. The object is stored in the public member “data” of the ngcdcsACQ class. The con-
figuration structure for the data interface is propagated from the more overall configuration of the
ngcdcsACQ class. So the complete ngedes_acq_cfg_t structure contains:

int cndPort; - command server port

int dataPort; - data server port

int errPort; - error-stack server port

int nunDataClient; - nunber of data clients per process
i nt transferMde; - data transfer node

char host[64]; - acquisition process host

char dev[128]; - acquisition process DVA device name
int seqldx; - associ ated sequencer instance

char nane[64]; - optional nane for this nodule

The data transfer done by the internal data object would block the acquisition module during the
transfer time of the image data. The applicable range of the data object would be limited unless one
provides a mechanism for asynchronous data transfer. Without using such a mechanism the data
transfer should be done by an external data transfer task. The host name and the port number re-
turned by the Host()/DataPort() member functions of the ngcdcsACQ class can be used to configure
such a task. Even though this was a standard solution, it will become complex and heavy to admin-
istrate in case of large mosaics with many acquisition processes on different NGC workstations. To
use the full transfer bandwidth one data transfer task per acquisition process needs to be launched
and controlled. A much more elegant way would be to use the internal data object from within a
thread running in the scope of the ngcdcsACQ class itself. This minimizes all configuration and syn-
chronization effort, as all needed information is simply already there and needs not to be communi-
cated at all. However the POSIX threads interface as described in section 7.1.3 basically does not
allow to create a thread by using a pointer to a C++ class member function. The solution is to put

60 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

the starter function outside of the class and declare it as extern "C". The POSIX thread creation rou-
tine allows a (void *) argument to be passed to the starter function. This can be used to pass a point-
er to the application class instance to the starter function, which then in turn can safely execute the
proper member function. The ngcb module contains a C++ class (hgcbTHREAD) which implements
this mechanism. By deriving from this ngcbTHREAD class it is possible to create/kill member func-
tion threads easily via the new/delete operator:

nmyThread = new ngcbTHREAD(t hi s, (ngcbPROCESS T)&myC ass:: MyFunction, &nyArg);

del ete nyThread;

For completeness the ngcbTHREAD library also contains a C++ style semaphore implementation
where a (counting) semaphore can also be created and initialized with the new operator.

mySem = new ngchSEM count);
nmySem >Wai t () ; /1 decrenent counter, block if zero

nySem >Post () ; /'l increment counter
For pure mutual exclusion purposes a (faster) mechanism (binary semaphore) is also included:

mySem = new ngcbSEM 1) ;
nmySem >Lock() ; /1 block, if |ocked

nmy Sem >Unl ock() ; /1 release the | ock

The acquisition module class derives from the ngcbTHREAD class and uses a (private) member
function to perform the asynchronous data transfer. The StartTransferring() method will launch the
thread, the StopTransferring() method will abort it. The transfer thread will request the image(s) from
the acquisition process, receive the image data and finally call a Store() method to save the data to
disk. Some FITS-header information is created internally at run-time (such as actual image dimen-
sion, frame type, data type and time stamps). Other FITS information (coming from a system snap-
shot at exposure start) is passed to the ngcdcsACQ class from outside. The FITS information is
combined and stored at the right place within the Store() method depending on the selected file for-
mat. The Store() method can be overloaded to implement different file formats. Using the thread
method the ngcdcsACQ class can easily be set up through member function calls to receive any type
and any number of image frames from the acquisition process.

In order not to use the asynchronous data transfer the DataConnect() method should be overloaded
with an empty function. This would prevent the ngcdcsACQ instance from establishing an (unused)
data connection when launching the acquisition process.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

8 MAINTENANCE SERVER

61

A basic control server class (ngcdcsSRYV) is available to test the modules described in the before sec-
tions and to provide a mean for developing the NGC prototype hardware. The ngcdcsSrv server

process uses an instance of this class:

opti ons:
-inst <l abel > -

-cfg <file-name> -
-dcf <fil e-nane> -
-sim <LCU| HW -
-node <node> -

-online -
-start -
- pol | -
-gui [nane] -

-1 d <dictionary> -
-det <index> -

-xterm -
-verbose <l evel > -

-l og <l evel > -
-shel | -

-stdin -
-dev <cfg-string> -

-acq <cfg-string> -

-ndet <nune -

-port <port numnber> -

-h or -usage -

usage: ngcdcsSrv [options]

server instance | abel

(default: label =)

| oad system configuration file
detector configuration file
start in sinulation node
operational node (NORVAL| HWSIM LCU-SIM
(default: nmode = NORMAL)

go online after start
auto-start at online

enabl e status polling

l aunch GQUI (nane is optional)
(default: no GU)

| oad dictionary (repetitive)
detector category index
(default: index = 1)

start processes in x-term nal
ver bose | evel

(default: level = 0)
I og | evel
(default: level = 0)

| aunch commuand shel |

enabl e stdin for command i nput
devi ce configuration

format of the string:
[type]:[host]| env]:[dev. -nane]
(default: one | ocal device)
acq. - nodul e configuration
format of the string:
[host]:[data-port]:[dev.-nane]
(default: one default nodul e)
nunber of detectors

(default: num= 1)

server port nunber

(default: port nunmber = 8030)
show options

The server is foreseen for system tests and detector tests in the laboratory and gives a versatile ac-
cess to all functions implemented in the module classes. The ngcbhCmd [-port <port number>] tool
can be used to send instructions to the server from a Unix shell. This allows the usage of dedicated
test scripts. A command shell can be launched with the -shell command line option. The shell sup-
ports the execution of macro commands. The shell can also be launched manually by calling ngcb-
Shell [-port <port number>]. The NGC_PORT environment variable can be used for the server port
number. The value will be overwritten by the -port command line option of both the server and the

two command tools.

The command "help" can be used to retrieve a command list. "help <command>" gives an explanation
of the specified command. "help all" gives a complete command overview.

62 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

The execution of this server does not require any special user privileges to be granted by the operat-
ing system.

For software testing it is possible to emulate various errors:

= No acknowledge from hardware module (“no_ack™)
< Invalid address on a NGC hardware module (“ivld)
= Sequencer FIFO empty (“seq_empty”)

= Sequencer goes to IDLE state (“seq_idle™)

= 1/0 error on all communication links (“io_err1,2,3”)
= |/0 error on data link (*data_i0)

= Error when writing data to a file (“data_file™)

= Server blocks forever (“block™)

Others may be added. The emulation can be done with the command “simerr <identifier>".

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

1

1.1

TRACEABILITY MATRIX

NGC Requirements from [AD6]

[tem Requirement Section
3.7 Software
1 Generally, software shall not limit the performance of the hard- 6.1,7
ware.
2 It shall be command driven. 5.1,5.2, 8 (toalimited
extend)
3.7.1 High-level operating systems
3 The high-level operating systems must be [compliant with the 2.2
VLT requirements. However, their number and diversity shall be
kept to the minimum necessary for NGC.
4 A careful attempt shall be made to define an interface layer 31,44
between the NGC control software proper and the operating sys-
tem(s) and so to enable porting of al software above this layer at
reasonable cost.
3.7.2 Configuration Control
5 At al times, al software and all parameter files shall be kept 3.2,6.7
under configuration control.
6 For critical parameter files, an additional mechanism to ensure TBD
their integrity (e.g., check sums) should be considered
3.7.3 Programming
7 The usage of modern code-generating tools with a view towards TBD

testing, documenting, and debugging is encouraged. Their selec-
tion should be coordinated with the Technica Division. Island
solutions should be avoided.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

[tem Requirement Section

8 For each module, code and documentation shall be designed such -
that it can be maintained without analyzing other modules.
3.7.4 Installation and start-up procedures

9 Fully automatic installation procedures and versatile configura- 3.2
tion tools shall be provided.

10 Execution of the standard control software in the telescope envi- 8, but seeremarksin
ronment shall not require any special user privilegesto be granted 712
by the operating system.

11 The start-up script shall not require more than 10 sfor auto-recog- | Not within this scope.
nition of the hardware and the ready-for-useinitialization of hard-
and software.
3.7.5 Resour ce checking

12 Software shall be able, prior to each exposure, to check theavaila- | Not within this scope.
bility of all critical resources.
3.7.6 Elementary functions

13 The set of elementary functions shall comprise those of IRACE Not within this scope.
and FIERA.

14 The addition of further functions shall be possible without affect- 6
ing the others.
3.7.7 Tests

15 Test software shall be developed in parallel to the control software 3.3
itself.

16 The emulation of failures of other utilities (software, hardware, 53,8

network, lack of resources, access denial) should be considered.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

[tem

Requirement

Section

17

Standardized tests of the software corresponding to any supported
hardware configuration shall be possible by merely selecting a
single set of parameters.

8 (to alimited extend)

18

A sequence of tests of several hardware configurations shall be
possible without operator intervention.

8 (to alimited extend)

19

Means should be considered to let NGC keep track of the fre-
guency of usage of its key functionalities as away to set usage-
oriented test priorities.

Not within this scope.

3.7.8 Times and timings

20

Without the VLT TIM, all absolute times shall be correct to within
less than 0.1s.

Not within this scope.

21

Relative synchronizations and time interval s shall be accurate to
better than 0.1% or, for intervals less than 10s, to better than
0.01s.

Not within this scope.

22

Stricter timing requirements shall be realized using TIM.

2.6,6.3.3

3.7.9 Special modes

23

Support of the following techniques (in the order of decreasing
priority) should be foreseen:

« nod and shuffle

= subpixel sampling and digital filtering so that during
an exposure the built-up of the S/N can be followed
by performing a regression analysis for each pixel

= drift scanning
« non-destructive readout

= on-chip charge shifts by a user-definable amount (e.g.,
for through-focus sequences)

7.2

24

Device type-specific modes offered by state-of-the-art IR detec-
tors shall be included.

7.2

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

[tem

Requirement

Section

25

If centroiding functions need to be supported, this shall be possi-
bleat aframerate of 1 Hz for dataarrays of up to 256 x 256 pixels
using asingle Gaussian fit or similar. For much smaller data
arrays, rates of up to 100 Hz should be possible.

7.2

3.7.10 Consecutive exposures

26

If, e.g. dueto on-line data processing, the time between end of
detector readout and availability of the FITS file on disk becomes
asignificant overhead, it shall be possible to configure the soft-
ware such that the next exposure begins right after the previous
readout.

Not within this scope.

3.7.11 Windowing and on-chip binning

27

Standard windowing and on-chip binning shall be provided

6.3.2,7.2

28

The number of windows should only belimited by the capabilities
of the detectors.

6.3.2,7.2

3.7.12 Pixel processor

29

A pixel processor shall be embedded in the system. Its interfaces
to the remainder of the system shall be designed such that a
replacement of the hardware plus operating system and/or of the
processing software can be fully transparent to all other subsys-
tems.

30

The following operations shall be supported from the beginning:
averaging of frames with and without removal of outliers (e.g.,
particle events)

= bias subtraction
= centroiding of point sources
 TBC

(If performance reasons so require, the implementation may be
detector dependent.)

72,726

31

Close integration with NGC of a general-purpose image process-
ing system featuring a user friendly scripting language could be
considered.

732

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

[tem

Requirement

Section

32

More desirable is an interface to the ESO DFS and the inclusion
of general-purpose algorithms and recipesin the DFS CPL for re-
use by data reduction pipelines.

Not within this scope.

3.7.13 ALMA control software

33

If thisisin the general interest of ESO and supported by the Tech-
nology Division, elements of the ALMA control software may be
used.

TBD

3.7.14 Special utilities

For multi-port systems, bias equalization to within better than 1%
shall be possible on demand but without any further operator
supervision.

7.2

3.8 External interfaces

35

Ideally, external interfaces (e.g., commands, databases) presently
maintained by IRACE and FIERA would be supported by NGC
with aminimum of changes so as to make the integration of NGC
with the ESO operations scheme as seamless as possible. How-
ever, sincein this regard the commonalities of FIERA and IRACE
are very limited, this also limits backward compatibility.

In no case shall NGC feature two different types of interfaces for
the same purpose.

Not within this scope.

3.8.1 Data for mat

36

The dataformat shall be compliant with the Data Interface Con-
trol Document.

Not within this scope.

37

Comprehensive detector and electronics telemetry shall be
included in the data headers.

Not within this scope.

38

From the FITS headers, it shall be possible to uniquely infer the
complete set of hard- and software configuration and all parame-
ter values.

Not within this scope.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

[tem Requirement Section
39 A generalized, moderately configurable interface to real-time Not within this scope.
computers, e.g. for adaptive optics or fringe tracking applications,
shall be defined (in cooperation with ESO software engineers
working downstream from such an interface).
40 It could be advantageous that (a possibly specia incarnation of) TBD
the pixel processor can serve as the real-time computer (or vice
Versa).
41 Latency shall not exceed 100 us. Not within this scope.
3.8.3 Real-time display
42 An interface to the RTD shall be provided. 731
43 For high framerates, it shall be possible to request only every nth 7.2
frame to be displayed.
44 Adaptive auto-selection shall be supported. 7.2
3.8.4 VLT telescope control system
45 It shall be possible to synchronize detector operations with the 26,2.7,6.3.3,6.34
following functions:
= Telescope nodding
= M2 chopping
= Non-sidereal tracking
3.85 VLT timedistribution system
46 The possibility of an interface to the VLT Time Interface Module 2.7,6.34
shall be foreseen.
47 - Reserved.
52

3.11 Diagnostic tools

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

[tem

Requirement

Section

3.11.1 Hardwar e self-test

53

The hardware shall be ableto execute acomprehensive self-test. It
shall be possibleto start it by pressing a physical button aswell as
by software. Due consideration shall be given to the protection of
the detectors. The execution shall not exceed 5 minutes. An auto-
matic log shall be produced.

6.6, 3.5

In order to save space on the electronics boards, it is acceptable to
let remote software (e.g., on the XL CU) execute these tests with
hardware only reporting its status. This software shall be devel-
oped in parallel to the one of the hardware.

6.6

3.11.2 Read-back of parameter values

55

It shall be possibleto read back the actual values of all parameters
set by software.

Not within this scope.

3.11.3 Automatic identification of hardware components

56

All LRUs (line Replaceable Unit) shall have a unique identifica-
tion that is readable by software.

21,61

57

An extension also to detectors shall be considered.

TBD, must be sup-
ported by hardware

58

Software shall be able to use thisinformation for auto-configura-
tion.

6.1

3.11.4 Error handling

59

Meaningful error messages and log files are essential; they shall
enable software staff not familiar with the software or its scope to
identify and fix minor problems. Different severity levels shall be
distinguished. The status and options for the next actions shall be
clear at al times.

3.5, 3.6

60

It shall be possible to set the severity level up to which automatic
recoveries from errors shall be attempted.

Not within this scope.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

[tem

Requirement

Section

61

After afailed data saving, the OS shall have the possibility to
recover the last frame.

Not within this scope.

62

After an interruption in the power supply, software should be able
to automatically restore the status at the beginning of the last suc-
cessful exposure.

Not possible.

3.12 Support of engineering work

3.12.1 Engineering mode

63

There shall be a password-protectable engineering mode. It may
contain extra modules and options while otherwise may be omit-
ted for reasons of convenience. However, modules used for nor-
mal operations shall be identical.

This mode shall offer accessto all essential elementary detector
control functions and allow hardware engineers rapid proto-typ-
ing of experimental software.

3.12.2 Change of parameters

65

A change of software-configurable parameters shall not require a
re-start of the system and, where possible, be supported also dur-
ing readout. Thiswould also benefit multi-mode instruments
where, e.g., imaging and spectroscopy require different parameter
setsfor optimal performance. Switching between modes shall not
lead to any hysteresis.

6.2,7.22

66

A mechanism shall be implemented to reduce the risk of out-of-
range parameter values being set accidentally that could damage
the connected detector(s). One possibility might be to let the con-
troller hardware request a unique electronic ID (such asthe serial
number) from the detector.

TBD

67

Aninterface to BOB shall be provided that permits parameter val-
uesto be set from dedicated observation blocks/ observing tem-
plates. To take advantage of this, laboratory setups would need to
be able to emulate VLT-compatible instruments to the extent that
VLT control software Sequencer scripts can be executed.

Not within this scope.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

[tem

Requirement

Section

3.12.3 Detector library

68

A repository with parameter files for specific detector types and
their baseline operating modes shall be offered. For engineering
purposes, easy copying and editing of such files shall be sup-
ported. To the extent possible, different installations of compara-
ble detector systems shall share these data.

Not within this scope.

3.12.4 Disabling of components

69

It shall be possible to declare LRUs and channels defunct. In
response to this, the software should be able to automatically
adapt itself to the remaining hardware configuration.

Not within this scope.

3.12.5 Special modes

70

The following shall be foreseen:
= pocket pumping
e convenient connection of monitoring equipment such
as oscilloscopes, multimeters, and logic analysers

e determination of PTF of DC-coupled IR and CMOS
devices by a capacitive comparison technique

24

3.12.6 Programming interface

71

Thought shall be given to the provision of an efficient program-
mer’sinterface, ideally with a standard scripting language such as
Tcl/Tk, that permits engineers rapid proto-typing of detector con-
trol and data processing software.

6.3.2

3.12.7 Test facility

72

A cost-effective test facility for all types of LRUs shall be sup-
plied. It may either be integrated into the controller or stand-
alone.

Not within this scope.

73

Its software shall use the one of the NGC only.

Not within this scope.

74

An expandible collection of standard test functions shall be con-
Sidered.

Not within this scope.

10 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

[tem Requirement Section

75 Where applicable, test results should aso be offered in graphical Not within this scope
form with an option for hardcopies.

3.12.8 Simulation modes

76 Standard VLT simulation modes shall be supported. Simulation 5.3
should be one of the standard modes of NGC rather than an add-
on.

77 To the greatest possible extent, simulation of key elements shall 53,729

be supported in both soft- and hardware.

78 Hardware simulators to generate programmabl e test pixel patterns Not used.
and video waveforms shall be devised.

79 Software simulators shall be hierarchically structured and permit 53,729
the simulation of data streams with real numbers and realistic data
rates so that relative timings, etc. can be tested.

1.2 NGC Software Requirements from [AD7]

[tem Requirement Section

3.1 Functional Requirements

3.1.1 Common Requirements

80 NGCSW shall handle at least TBD clocks, TBD biases, TBD 6.3,6.4,6.5
preamps and TBD video channels.

81 NGCSW will implement, as a minimum, the commands already Not within this scope.
used by FIERA and IRACE and described in their CDTs with an
interface which will alow backward compatibility.

82 The ONLINE status requires that all voltages are loaded and Not within this scope.
switches closed as well astelemetry is acquired and checked.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

11

[tem Requirement Section

83 NGCSW will handle multiple independent detectors. 6

84 It shall be possible to read number of windows limited only by 6.3.2,7.2
detector properties

85 Windows shall be read either in hardware through sequencesor in 6.3.2,72, 727,731
software. The latter case impliesthat afull frameisread out and
then awindow of datais computed in memory.

86 Telemetry shall be available at all times, with the possibility to 6.4
have a separate period for logging on the VLT logMonitor.

87 NGCSW shall transfer all computed resultsto display (RTD) and/ 7.2
or to FITSHile.

88 Display visualization isdone in parallel to all other data transfers 7.2
(i.e. onemay look at the DIT frame while storing the INT frame
to disk and while the next datais aready being processed).

89 If processing- or data-transfer-bandwidth exceeds the capacity of 22,72
one single compuiter, the task is split up to N computing units.

90 In order to test the image data path, NGC must be able to produce 7.29
pre-defined data,
3.1.3 Infrared Specific Requirements

91 Each Pixel can be read out N times and an average is computed. 7.2

92 Subsampling and digital filtering of individual pixels shall be pos- 7.2
sible.

93 The ONLINE status requires that the system also starts readout. Not within this scope.

9 In case reference values on special channels are read out (e.g. 7.2
Hawaii2RG), NGC shall be able to interpolate through rows or
columns.

95 Chopping mode shall be implemented 7.2

12

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

[tem Requirement Section
96 NGCSW shall be able to transfer bursts of raw datato FITSfiles. | 7.2 (partially), [RD11]
97 Standard read-out modes: 7.2
= Uncorrelated
= Double correlated (reset-read-read)
= Double correlated (read-reset-read)
= Leastsquare fit
= Fowler Sampling
3.2 External Interface Requirements
3.21 User Interfaces
98 NGCSW user interfaces will be developed following rules Not within this scope.
described in [RD39].
99 The user interface for telescope operations will merge functionali- | Not within this scope.
ties of current FIERA and IRACE user interfaces.
100 Specific graphica interface may be developed in order to ease 8
engineer’s work in the laboratory. These interfaces may be devel-
oped not following the standards if their use is confined to labora-
tory.
3.2.3 Software Interfaces
101 Sequencer programming shall be implemented using a scripting 6.3.2
language.
102 The scripting language will allow evaluation of arithmetic formu- 6.3.2
las at run-time.
103 The startup overhead of the script must be as short as possible. 6.3.2
104 Where no script is required a simple parsing can be done. 6.3.2
105 A graphical tool shall be implemented in order to have also the Not within this scope.

possibility to program and visualize the sequences.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

13

[tem Requirement Section
106 The format on disk of the sequences shall be ASCII. 6.3.2
107 Other formats, non ASCII, for ancillary data (e.g. for graphics) 6.3.2
could be used, but must not be required for running the system.
108 The sequence programming will allow free use of setup parame- 6.3.2
ters.
109 The chopper frequency may be input parameter or output parame- 6.3.2
ter of the sequencer program.
110 Free placement of synchronization points with external trigger. 6.3
111 Read-out of multiple windows shall be configurable in program- 6.3.2
ming.
112 Sub-pixel sampling (N samples per pixel) shall also be possible 6.3.2
113 The sequencer programming tool will also allow to emulate the 53
real sequencer.
114 Interface to standard RTD shall be provided. 731
115 Theinterface and the library to be used are given in [RD40]. 731
116 If needed flat-field frame and bad pixels mask shall be uploaded to 7.2.6
NGCSW which will then distribute them to the relevant subsys-
tem.
3.2.4 Communications I nterfaces
117 Communication between internal subsystems of NGCSW shall be 51,52
implemented using VLTSW standard messaging tools as well as
CCS database.
118 Whenever not otherwise specified, the same standards will be 51,52
used for all other communication interfaces.

14 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836
[tem Requirement Section
3.3.2 Data Transfer
119 Datatransfer rate to the IWS shall be limited only by readout 7.2
speed.
120 An overhead of max. 5 seconds will be considered acceptable. 7.2
1.3 Adaptive Optics Requirements for NGC from [AD20]
[tem Requirement Section
AONGCREQ-004 | Number of detectors controlled from single NGC: 1-4 2,6
AONGCREQ-005 | It should be possible to control multiple detectors with asin- 2,6
gle NGC.

AONGCREQ-006 | The detectors controlled by asingle NGC al be read with the 2,6,7.2
same read-mode and frame rate. Operations such as start and
stop, should operate on all detectors simultaneously.

AONGCREQ-007 | It should be possible to synchronize the start of aread 2.7,6.34
sequence between NGCs

AONGCREQ-008 | The synchronization should allow the start of the readout in 27,634
separate NGCs to be started within the frame jitter time.

AONGCREQ-009 | Ability to visualise 1 of N frames asynchronously on instru- 7.2
ment WS using standard RTD, the value of N will be chosen
to allow visualisation on the WS of 1-4Hz, the maximum
frame rate required to the WS will be 50Hz.

AONGCREQ-010 | Ability store 1 of N frames asynchronously in FITS format 7.2
on instrument WS, the value of N will be defined to allow a
maximum frame rate of 50Hz.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

15

datalink as though coming from anormal readout sequence.

Item Requirement Section

AONGCREQ-011 | Ability to store a series of N guaranteed consecutive frames, 7.2
where N should be sufficient to store aminimum of 2 seconds
of datawith agoal of 10s.

AONGCREQ-012 | At least one ROI (windowing/regions of interest) per detector | 6.3.2,7.2,7.2.7,
should be supported, as agoal multiple ROIs. 731

AONGCREQ-013 | It should be possible to update the ROI definition (at a mini- -
mum start coordinates) dynamically when aloop of readouts
isin operation.

AONGCREQ-014 | Ability to synchronize the start of areadout sequence with an 27,634
external trigger to within 30 micro seconds.

AONGCREQ-015 | 1x1 to 16x16 defined in steps of 1 pixel binning is the same 6.3.2,7.2,7.2.7,
for each window within a given detector. 731

AONGCREQ-024 | It should be possible to command the NGC to execute a 6.3.2
defined read sequence for the defined mosaic

AONGCREQ-025 | N times. 6.3.2

AONGCREQ-026 | with auser definable (in microseconds) delay (from 0 to 6.3.2
TBD) between executions

AONGCREQ-027 | where N isavalue between 1 and Inf. 6.3.2

AONGCREQ-028 | A stop command for a given mosaic should stop the current 6.3.3
loop of readout sequences at the completion of the next cycle

AONGCREQ- It should be possible to instruct the NGC to passa 15bit data | TBD - must be
028a ramp over the real time datalink in a standard frame includ- supported by

ing both start and end of frame words at frame rates up to the hardware
maximum supported

AONGCREQ-029 | Asagoal it should be possible to load simulated imagesinto | Not supported by
the NGC memory and have them ‘ played back’ over the RT HW.

16 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836
[tem Requirement Section
AONGCREQ-030 | Thereplay speed should be auser parameter up to the maxi- | Not supported by
mum possible frame rate. HW.
AONGCREQ-038 | Define one (or more) ROIs for a specified detector with start 6.3.2,7.2,7.2.7,
pixel and window dimensions. 731
AONGCREQ-039 | Define readout mode for detector mosaic. Not within this
scope.
AONGCREQ-040 | Enable/Disable storage of detector frames. 725,731
AONGCREQ-041 | Define sub-sampling of readout to be passed to instrument 7.2
workstation for visualisation or storage.
AONGCREQ-042 | Start readout of mosaic of detectorsfor N cycles, 1<=N<=Inf 6.3.2,6.3.3
AONGCREQ-043 | with optional synchronization with external synch signal. 27,634
AONGCREQ-044 | Stop readout of amosaic of detectors. 6.3.3
AONGCREQ-045 | Acquire and store a contiguous set of N frames from a 6.3.2,7.2
‘group’ of detectors.
AONGCREQ-046 | Upload a set of detector frames to be replayed in simulation Not supported by
mode. HW.
AONGCREQ-047 | Replay previously uploaded simulated dataframes at defined | Not supported by
loop frequency. HW.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

1 APPENDIX

1.1 ngcb2Drv - Command Definition Table

PUBLI C_COVVANDS

COVVAND=
FORMAT=
REPLY_FORMAT=
HELP_TEXT=

I nterrupt server.

@

COVMAND=
FORMAT=
REPLY_FORMAT=
HELP_TEXT=

Make the server

@

COVMAND=
FORMAT=
REPLY_FORMAT=
HELP_TEXT=

Send a KILL signal

@

COVVAND=
FORVAT=
REPLY_FORMAT=
HELP_TEXT=

Di sabl e aut ol oggi ng of nmessages sent or

@

COVVAND=
FORMAT=
REPLY_FORMAT=
HELP_TEXT=

BREAK

A

EXIT
A
A

exit/term nate.

Kl LL
A
A

to the server.

M5GDLOG
A
A

MSGELOG
A
A

recei ved by the application.

Enabl e aut ol oggi ng of messages sent or received by the application.

@

COMVAND=
FORVAT=
REPLY_FORVAT=

REPLY_PARAMETERS=

PAR_NAVE=
PAR_TYPE=

PAR DEF_VAL=

HELP_TEXT=

Connect server to

@

COMVAND=
FORVAT=
REPLY_FORMAT=

REPLY_PARAMETERS=

PAR_NAVE=
PAR_TYPE=

PAR DEF_VAL=

HELP_TEXT=

ONLI NE
A
A

done
STRI NG

i nterface device.

Pl NG
A
A

done
STRI NG

Make a check of the functioning of the server and send back an

2 NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

overal | status nessage.

@

COVMVAND= RDADDR
FORMAT= B
REPLY_FORMAT= B
HELP_TEXT=

Bi nary read from a nodul e address.

@

COMVAND= RESET
FORMAT= A
REPLY_FORVAT= A
REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR DEF VAL= “K"
HELP_TEXT=
Send a reset instruction to the interface device.
@
COMVAND= S| MULAT
SYNONYMS= SIM
FORMAT= A
REPLY_FORVAT= A
REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR DEF VAL= “K"
HELP_TEXT=

Switch to sinulation nmbde. A sinmulator will
accessing the physical interface device.

@
COMVAND= STANDBY
FORVAT= A
REPLY_ FORMAT= A
REPLY_PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG
PAR DEF VAL= “CK’
HELP TEXT=
Di sconnect server frominterface device.
@
COMVAND= STATUS
FORVAT= A
REPLY FORMAT= A
REPLY_PARAMETERS=
PAR_NANME= st at us
PAR_TYPE= | NTEGER
PAR_DEF_VAL= 0
HELP_TEXT=

Get physical interface device status.

@

COMVAND= STOPSI M

FORNMAT= A

REPLY_FORMAT= A

REPLY PARAMETERS=
PAR_NAME= done
PAR_TYPE= STRI NG

PAR DEF_VAL= “ K’

be used instead of

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

HELP_TEXT=
Switch to nornal operation node.
@
COMVAND= TI MEOQUT
FORMVAT= A
PARAMETERS=
PAR_NAME= seconds
PAR_TYPE= | NTEGER
PAR_CPTI ONAL=NO
REPLY_FORMAT= A
REPLY_PARAMETERS=
PAR _NAME= done
PAR_TYPE= STRI NG
PAR DEF_VAL= “CK"
HELP_TEXT=
Set a new tineout (in seconds) for the device i/o.
@
COMVAND= VERBCSE
FORVAT= A
PARAMETERS=
PAR_NANME= on
PAR_TYPE= LOG CAL

PAR_CPTI ONAL=YES

PAR_NANE= of f
PAR_TYPE= LOG CAL
PAR_COPTI ONAL=YES
REPLY_FORMAT= A
HELP_TEXT=
Swi tch verbose node on/off.
@
COMVAND= VERS| ON
FORMAT= A
PARAMETERS=
REPLY_FORMAT= A
HELP_TEXT=
Return the present server version.
@
COMVAND= WRADDR
FORVAT= B
REPLY_FORMAT= B
HELP_TEXT=
Binary wite to a nodul e address.
@

MAI NTENANCE_COMVANDS
TEST_COMVANDS

Il --- 0Qo ---

4 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836
1.2 ngcbDrvCom
NAME
ngcbDrvCom - NGC driver interface for comunication |ine
SYNOPSI S
#i ncl ude "ngcbDrv. h"
i nt ngcbConOpen(const char *name, char *erns)
i nt ngcbConCl ose(int fd)
i nt ngcbConReset (int fd)
i nt ngcbConTi meout (i nt fd, int seconds)
i nt ngcbConRead(int fd, char *buffer, int size, char *erns)
int ngcbConWite(int fd, char *buffer, int size, char *erns)
i nt ngcbConReadSt at us(i nt fd)
i nt ngcbConErr Status()
voi d ngcbConErrStr(int status, char *errStr)
voi d ngcbConfstat Str(int status, char *errStr)
DESCRI PTI ON
ngcbConOpen() opens connection to the front-end.
ngcbConl ose() cl oses the connection to the front-end.
ngcbConReset () perforns a device reset of the subsystem
ngcbConi meout () sets the tineout for read/wite accesses in seconds.
ngcbConRead() reads a nunber of bytes fromthe device.
ngcbComNite() wites a nunber of bytes to the device.
ngcbConReadSt at us() returns the actual value of the conmunication
status register.
ngcbConErr Status() returns the saved status value of the |ast
faulty 1/O The saved value is reset to zero on each device
open/ cl ose.
ngcbConErrStr() returns in <errStr> an error nessage natching
the given <status>.
ngcbConftat Str() returns in <statStr> a status nessage matching
the given <status>.
RETURN VALUES

ngcbConOpen returns an open file descriptor in case of success.
A value of -1 indicates an error.

I'f not specified otherwise all other functions return zero in
case of success. A value of -1 indicates an error.

<erms> will contain an error-nmessage in case of failure.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.3 ngcbDrvDma

NAME

ngcbDrvDma - interface library to NGC DVA driver
SYNOPSI S

#i ncl ude "ngcbDrv. h"

i nt ngcbDmaOpen(const char *devName, ngcb_dma_t *dma, char *erns)
i nt ngcbDmaCl ose(ngcb_dma_t *dma, char *erns)

i nt ngcbDmeAl | oc(ngcb_dnma_t dnma,
unsi gned char **buffer,
int num
unsi gned | ong si ze,
char *erns)

voi d ngcbDmaFree(ngcb_dma_t dma, unsigned char **buffer, int num

i nt ngcbDmal nit(ngcb_dma_t *dma,
unsi gned char **buffer,
int num
unsi gned | ong si ze,
unsi gned i nt *doneCount,
char *erns)

i nt ngcbDmaSt op(ngcb_dma_t dma, char *erns)

i nt ngcbDmadC r(ngcb_dna_t dma, char *erns)

i nt ngcbDmaGet Cnt (ngcb_dna_t dma, unsigned int *cnt, char *ermns)
int ngcbDmaWit (ngcb_dma_t dma, unsigned int cnt, char *erns)

i nt ngcbDmaSt at (ngcb_dma_t dnma, int *byteCount, char *erns)

i nt ngcbDmaOverfl owm ngcb_dma_t dma)

DESCRI PTI ON

ngcbDmaCpen() opens the dma interface driver with device nane
<devName>.

ngcbDmaCl ose() closes the dma interface driver referred to by
the devi ce handl e <dma>.

ngcbDmeAl | oc() all ocates <nun» DMA ringbuffer elements with
the specified size (in bytes). The <nunm> buffer pointers have to
be all ocated by the calling application.

ngcbDmaFree() frees the DVA ringbuffer space previously allocated
with ngcbDmaAl | oc().

ngcbDmal nit() initiates a sustained ringbuffered DVA-read. The
array of buffers has to be passed to the routine. <nunk is the
nunber of ringbuffer elenents and <size> is the size (in bytes)

of each buffer element. As current Linux kernel versions do no

| onger support DMA to user-space nmenory, the current inplementation
i gnores the <buf> <nun> and <size> paraneters and does the DVA

to the buffers allocated/ mapped in the kernel with ngcbDmaAll oc().

The paraneters are left in here as user-space DVA nay re-appear again
and the applications may benefit fromsuch an inplenentation. To keep

the user space code conpatible with such cases it is strongly
recommended to pass the <buf>, <nun» and <size> values fromthe
ngcbDmeAl | oc() routine into here. <doneCount> is set by the
routine as initial buffer counter. Usually this will be zero,
but the value mght differ when using future driver versions.

6 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836
ngcbDmaSt op() stops the current DVA
ngcbDmeC r () clears all DVA data Fl FGCs.
ngcbDmaGet Cnt () gets the current buffer counter.
ngcbDmaVi t () suspends the calling routine until the next DWVA-buffer
has been received.
ngcbDmaSt at () sets <byteCount> to the nunber of bytes which are
still left in the current DVA.
ngcbDmaOverfl ow() returns a value of 1 in case of a data
FI FO overflow. O herw se, a value of 0 is returned.
RETURN VALUES
ngcbDmaOverfl ow returns a value of 1 in case of an input
fifo overflow Oherwise, a value of 0 is returned.
Al'l other functions:
Upon successful conpletion, a value of 0 is returned.
O herwi se a value of -1 is returned and ernms contains an
error string.
CAUTI ONS
The ngcbDmaOpen() function must always be called before any of the
other functions in this set can be used. The device shoul d al ways
be cl osed before being re-opened.
SEE ALSO

ngcbDmaPci (3), ngcbDma0(3)

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.4 ngcbPrio

NAME

ngcbPri o, ngcbGetPrio, ngchSetPrio - priority control
SYNOPSI S

#i ncl ude "ngchb. h"

int ngcbGetPrio(int *priority, int *class, int *quantum
int ngcbSetPrio(int priority, int class, int quantum

DESCRI PTI ON
Priority control:

The tinme quantumis expressed in microseconds (only relevant
for real-tinme class).

ngcbTQ INF: infitite time quantum
ngcbTQ DEF: default tinme quantum
ngcbTQ NC. do not change previous val ue

cl asses: ngcbhPRI_RT - real time class
ngcbPRI_TS - time sharing class

The priority is rising with higher val ues.
RETURN VALUES

In case of failure -1 is returned, otherw se zero.

1.5 ngcbThread

NAME
ngcbThread, ngcbThrCreate, ngcbThrExit, ngcbThrKill, ngcbThrJoin - thread routines
SYNOPSI S
#i ncl ude "ngcbThread. h"
i nt ngcbThr Create(void *(*startFunc)(void *),
voi d *arg,
| ong flags,
ngcb_t hread_t *thread)
voi d ngcbThr Exit (void *status)
int ngcbThrKill (ngcb_thread_t thread, int sig)
int ngcbThrJoi n(ngcb_t hread_t t hr ead,
ngcb_thread_t *departed,
voi d **stat us)
ngcb_thread_t ngcbThrid()
DESCRI PTI ON
Thread routines (behave |ike pthread/POSI X or thread/ SOLARI'S).
CAUTI ONS
ngcbThread. h al so provides definitions to support the sane nonencl ature
as used for the Solaris inplenmentation. See also the man pages for
thr_create(3THR), thr_join(3THR), thr_kill (3THR) and thr_exit(3THR)
on Sol ari s.
SEE ALSO

thr_create(3THR), thr_join(3THR), thr_kill (3THR), thr_exit(3THR)

1.6

NAME

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

ngcbSem

ngcbSem ngcbSem nit, ngcbSenDestroy, ngcbSemMit, ngcbSenmPost, ngcbSenryWit,
ngcbhSentnt, ngcbSeniock, ngcbSenlnl ock, ngcbSenTryLock, ngcbRwLockl ni t,
ngcbRwLockDest r oy, ngcbRwRdLock, ngcbRWV Lock, ngcbRwUnl ock, ngcbRwTr yRdLock,
ngcbTryW Lock - wrapping routines for semaphores and readers/witer-locks using the
posi X nutex routines

SYNOPSI S

#i ncl ude "ngcbThread. h"

i nt ngcbSem nit(ngcb_sema_t *sp,
unsigned int count,
i nt type,
voi d *ar g)

i nt ngcbSenDestroy(ngcb_sema_t *sp)

i nt ngcbSenLock(ngch_sema_t *sp)

i nt ngcbSenlnl ock(ngcb_sema_t *sp)

i nt ngcbSenTryLock(ngcb_sema_t *sp)

i nt ngcbSemAait (ngch_sema_t *sp)

i nt ngcbSenPost (ngcb_sema_t *sp)

i nt ngcbSenTryWait (ngcb_sema_t *sp)

i nt ngcbSentnt (ngcb_sema_t *sp)

i nt ngcbRwLocklnit(ngchb_lock_t *rwp, int type, void *arg)
i nt ngcbRwDestroy(ngcb_l ock_t *rw p)
int ngcbRwmRdLock(ngcb_l ock_t *rw p)

i nt ngcbRwTryRdLock(ngcb_l ock_t *rw p)
i nt ngcbRWWV Lock(ngcb_l ock_t *rw p)
int ngcbRwTryW Lock(ngcb_l ock_t *rw p)

int ngcbRwUnl ock(ngcb_l ock_t *rw p)

DESCRI PTI ON

Routi nes for semaphores and readers/witer-locks using the posix
nut exes:

ngchSem nit() creates a new counting semaphore. <count> specifies the
initial semaphore counter val ue.

i nt ngcbSenDestroy() destroys the specified senphore.

voi d ngcbSenlock() acquires the binary | ock associated with the
semaphore. The function will block until the lock is available.

voi d ngcbSemnl ock() rel eases the binary | ock associated with
t he semaphore.

i nt ngcbSenTryLock() tries to get the binary |ock associated with
the semaphore. If the lock is not available, the function returns (-1).

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

O herwi se the lock is acquired and zero is returned.
ngcbSenPost () increnments the semaphore counter for the specified semaphore.

voi d ngcbhSemAait () decrements the senphore counter for the
speci fied semaphore. If the counter is zero, the calling process
i s suspended.

i nt ngcbSenTryWait () decrements senphore counter for the specified
semaphore. If the counter is zero, the function returns (-1).

int ngcbSentnt() returns the current counter value of the specified
senmaphor e.

Many t hreads can have sinultaneous read-only access to data, while
only one thread can have wite access at any given tine. Miltiple
read access with single wite access is controlled by |ocks, which
are generally used to protect data that is frequently searched:

ngcbRwLockl nit() initializes a new readers/witer lock. This is
i mpl emented only wi htin threads-scope and the paraneters type and arg
are ignored.

ngcbRwDestroy() destroys a readers/witer lock pointed to by <rw p>.

ngcbRwRdLock() gets a read | ock on the readers/witer |ock
pointed to by <rwp>. If the readers/witer lock is currently
| ocked for witing, the calling thread bl ocks until the
wite lock is freed. Multiple threads may simnultaneously

hold a read | ock on a readers/witer |ock.

ngcbRwTryRdLock() tries to get a read |ock on the readers/witer
| ock pointed to by <rwip>. |[If the readers/witer |lock is |ocked for
witing, it returns (-1). O herwise, the read lock is acquired.

ngcbRWV Lock() gets a wite lock on the readers/witer |ock
pointed to by <rwp>. |If the readers/witer lock is currently

| ocked for reading or witing, the calling thread bl ocks

until all the read and wite | ocks are freed. At any given tine,
only one thread may have a wite |lock on a readers/witer |ock.

ngcbRwWTryW Lock() trys to get a wite lock on the readers/witer
| ock pointed to by <rwp> |If the readers/witer lock is currently
| ocked for reading or witing, it returns (-1).

ngcbRwUNnl ock() unl ocks a readers/witer |ock pointed to by <rw p>,

if the readers/witer lock is |ocked and the calling thread hol ds
the lock for either reading or witing. One of the other threads that
is waiting for the readers/witer lock to be freed will be unbl ocked,
provi ded there are other waiting threads. If the calling thread does
not hold the lock for either reading or witing, no error status is
returned, and the progranmi s behavior is unknown.

RETURN VALUES

If not specified differently all functions return a value of 0
in case of successful operation. Oherwise (-1) is returned.

CAUTI ONS

The ngcbSenlock/ Unl ock/ TryLock functions are intendend to speed up
semaphore handling intended for mutual exlusion protection rather than
for signalling. The functions behave |ike the pthread_nutex_| ock/unl ock
i mpl ement ati on.

The ngcbSentnt () function is not available in the Solaris senmaphore
i mpl ementation and will always return a value of (-1).

ngcbThread. h al so provides definitions to support the same nonencal ture
as used for the Solaris inplementation. See also the nan pages for

10 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

sema_init(3THR) and rw ock_init(3THR) on Sol ari s.

SEE ALSO

pt hread_nut ex_Il ock(3), pthread_nutex_unlock(3), senma_init(3THR),
rwl ock_i nit(3THR)

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 11

1.7 ncgbTHREAD Class

NAME

ngcbTHREAD - C++ interface for posix threads
SYNOPSI S

#i ncl ude <ngcbTHREAD. h>

ngcbTHREAD baseCd ass();
ngcbTHREAD newThread(t his, (ngcbPROCESS T) &process, (void *)arg);

DESCRI PTI ON
C++ interface for posix threads.

PUBLI C METHODS

ngcbTHREAD() ;
Constructor nethod providing a base class for all applications,
which want to use this interface.

ngcbTHREAD(ngcbTHREAD *appl, ngcbPROCESS T process, void *arg)
Constructor for a thread-object. This wll start the specified
process, which is declared in the application class. A pointer
to the calling application class is passed in <appl>. <arg> passes
a pointer to an application specific argunent through to the
call ed process. The <process> nust be a nmenber function of the
application class. The <process> nust be of type:

voi d <appl >::Process(void *arg)

The application class nust be derived fromthe ncgbTHREAD cl ass.
A pipe is created to be able to trigger the created process via
a select call.

vi rtual ~ngcbTHREAD() ;
Dest ruct or net hod.

i rtual ngcbTHREAD * NewThr ead(ngcbTHREAD *appl ,
ngchbPROCESS T process,
void *arg);
Creates a new thread object, statring the specified process.
Procedural interface to threwad-object creation with the
<new> operator.

i nt Thr Creat e(ngcbTHREAD *appl ,

ngcbPROCESS T process,

voi d *arg,

ngcbTHREAD T *t hreadl d,

char *erns);
Function to create a thread in the scope of the specified
application class <appl > <arg> passes a pointer to an
application specific argunent through to the called process.
The <process> nmust be of type:

voi d <appl >:: Process(ngcbTHREAD *t hread, void *arg)

A thread-id is returned in <threadld> as a handle to be used
in later calls to the ThrJoin() and ThrKill () nenber functions.

void ThrExit();
Function to be called by a thread before exiting.

int ThrKill(ngcbTHREAD T threadld, int sig, char *erns);
Function to send signal to a thread specified via the handle
<threadl d>. The <threadld> is retrieved by calling the ThrCreate()
menber function.

int ThrJoi n(ngcbTHREAD T t hreadld, char *ermns);
Function to join a thread specified via the handl e <threadl d>.
The <threadld> is retrieved by calling the ThrCreate() nenber

12 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

function. The calling process is suspended until the specified
thread exits.

int ThrKill(int sig, char *erms);

int ThrJoin(char *erns);
Sane as the above functions but these are used for killing/joining
a thread-object constructed with the second constructor.

int Initialized();
Returns (1) In case a thread-object constructed with the
second constructor was created successfully.

int FdIn();
Returns a file descriptor to be used in the thread for a wakeup
sel ect call.

int FdQut();
Returns a file descriptor to be witten to in order to send a
nessage to the called thread.

ngcbTHREAD T Thr eadl d()
Returns own thread id.

RETURN VALUES

If not specified otherwise all functions return (0) in
case of success. If an error occured (-1) is returned and <erns>
will contain an error-nessage.

EXAMPLES
cl ass nyCLASS: public ngcbTHREAD {

ngcbTHREAD *nyThr ead_;

public:
my CLASS()
nyThread_ = (ngcbTHREAD *) NULL;

}

voi d MyProcess(ngcbTHREAD *t hr, void *arg) {
int fdThr = thr->Fdin();

use fdThr in select call te get triggered for abort

}

void Start MyProcess {
nyThread_ = NewThread(t hi s,
(ngcbPROCESS_T) &y CLASS: : MyPr ocess,
NULL) ;

if (myThread_ == (ngcbTHREAD *) NULL)
{
error handling ...
}
else if (!'nmyThread_->Initialized())

del ete nmyThread_;
error handling ...

}

void Kill MyProcess {
if (myThread_ != (ngcbTHREAD *) NULL)

del ete myThread_;
}

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 13

}

SEE ALSO
ngcbSenm(3), ngcbThread(3), ngcbSEM 4)

14 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.8 ngcbSEM Class

NAME

ngcbhSEM - C++ interface for semaphores using the posix mutex routines
SYNOPSI S

#i ncl ude <ngcbTHREAD. h>

ngcbSEM based ass() ;
ngcbSEM sen(count) ;

DESCRI PTI ON
C++ interface for senmaphores using the posix nutex routines.

PUBLI C METHODS
ngchSEM)) ;
Constructor nethod providing a base class for application
speci fi c senaphores.

ngcbSEM unsi gned int count);
Constructor nethod for a counting senmaphore object. <count>
specifies the initial semaphore counter val ue.

virtual ~ngcbhSEM);
Destruct or net hod.

int Create(ngcbhSEM T *sp, unsigned int count, char *erns);
Create a new counting semaphore. <count> specifies the
initial semaphore counter val ue.

int Destroy(ngchSEM T *sp, char *erns);
Destroy the specified senphore.

voi d Lock(ngchSEM T *sp);
Acquire the binary | ock associated with the semaphore. The
function will block until the lock is avail able.

voi d Unl ock(ngchSEM T *sp);
Rel ease the binary | ock associated with the semaphore.

int TryLock(ngchSEM T *sp);
Tries to get the binary | ock associated with the senmaphore.
If the lock is not available, the function returns (-1).
O herwise the lock is acquired and zero is returned.

voi d Post (ngchSEM T *sp);
I ncrement semaphore counter for the specified semaphore.

void Wait (ngchSEM T *sp);
Decrenment senphore counter for the specified semaphore.
If the counter is zero, the calling process is suspended.

int TryWait(ngchSEM T *sp);
Decrenment senphore counter for the specified semaphore.
If the counter is zero, the function returns (-1).

int Cnt(ngcbSEM T *sp);
Returns the current counter value of the specified semaphore.

voi d Lock();
Acquire the binary | ock associated with the own semaphore
object. The function will block until the lock is avail able.

voi d Unl ock();
Rel ease the binary | ock associated with the own semaphore object.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

int TryLock();
Tries to get the binary | ock associated with the oen semaphore.
object. If the lock is not available, the function returns (-1).
O herwise the lock is acquired and zero is returned.

voi d Post();
I ncrement semaphore counter for own sermaphore object.

void Wait ();
Decrenent senphore counter for own senmaphore object.
If the counter is zero, the calling process is suspended.

int TryWait();
Decrenment senphore counter for own senmaphore object.
If the counter is zero, the function returns (-1).

int Cnt();
Returns the current counter value of the own semaphore object.

RETURN VALUES

I'f not specified otherwise all functions return (0) in
case of success. If an error occured (-1) is returned and <erns>
(if present) will contain an error-nessage.

CAUTI ONS

The ngcbSentlock/ Unl ock/ TryLock functions are intendend to speed up
semaphore handling intended for mutual exlusion protection rather than
for signalling. The functions behave |ike the pthread_nutex_| ock/unl ock
i mpl erent ati on.

SEE ALSO
ngcbTHREAD(4), pthread_mutex_| ock(3), pthread_nutex_unl ock(3)

15

16 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.9 ngcbPARAM Class

NAME

ngcbPARAM ngcbPARAM LI ST - NGC paraneter mai ntenance cl asses
SYNOPSI S

#i ncl ude <ngcbPARAM h>

ngcbPARAM par an() ;
ngcbPARAM LI ST list();

DESCRI PTI ON
NGC par anet er nai nt enance cl asses.

PUBLI C METHODS
ngcbPARAM cl ass:

ngcbPARAM const char *paranmName, char initVval);

ngcbPARAM const char *paranName, int initVal);

ngcbPARAM const char *paramNane, float initVal);

ngcbPARAM const char *paranName, double initVal);

ngcbPARAM const char *paramName, const char *initVal);

ngcbPARAM const char *paranName, const char *initVal, int type);
Constructor nmethods for several types. If the initial value
is given as string , optionally a type can be specified, which
has to be one of:

ngcbPARAM CHAR - logical ("T or 'F or 0 or 1)
ngcbPARAM | NT - 32-bit signed integer
ngcbPARAM FLOAT - 32-bit floating point
ngcbPARAM DOUBLE - 64-bit floating point
ngcbPARAM STRI NG - string
(max. |ength: ngcbPARAM MAX_STRI NG = 256)

ngcbPARAM const char *paranmNane);
Constructor for paraneter with undefined type.

virtual ~ngcbPARAM);
Destruct or net hod.

void Alias(const char *a);
Set an alternative alias nane for this paraneter.

int Type();
Cet paraneter type.

voi d Type(int newType);
Set a new paraneter type. See above for valid types.

i nt Changed();
Returns 1 in case the paraneter value has changed since the | ast
call of this method. CGtherwise 0 is returned.

i nt Conp(ngchbPARAM p)
Returns 1 in case the paraneter value is equal to the value
of paraneter <p> Oherwise 0 is returned.

void Store();
Store paraneter value to a tenporary buffer.

voi d Restore();
Restore paraneter value froma tenporary buffer.

char *Get();
Get paraneter value converted to string fornat.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836 17

int Set(const char *newal ue);
Convert value fromstring format to Type() and set this as
new val ue.

i nt Set(char newval ue);
Convert value fromlogical format to Type() and set this as
new val ue.

int Set(int newval ue);
Convert value from 32-bit signed integer format to Type()
and set this as new val ue.

int Set(float newval ue);
Convert value from 32-bit floating point format to Type()
and set this as new val ue.

i nt Set(doubl e newval ue);
Convert value from64-bit floating point format to Type()
and set this as new val ue.

char Val Char();
Get paraneter value converted to |ogical format.

int Vallnt();
Get paraneter value converted to 32-bit integer format.

float Val Float();

Get paraneter val ue converted to 32-bit floating point format.

doubl e Val Doubl e();

Get paraneter val ue converted to 64-bit floating point format.

char *Val String();

Get paraneter value converted to string format - same as Get().

ngcbPARAM LI ST cl ass:

ngcbPARAM LI ST() ;
Const ruct or net hod.

virtual ~ngcbPARAM LI ST();
Dest ruct or net hod.

ngcbPARAM * Add(ngcbPARAM *newParam int noDelete = 1);
Add a new paraneter object to the list. If a paranmeter object
with the sane name does already exist a pointer to the existing
object is returned. Gtherw se the sane object is returned.
If noDelete is set to zero, the paraneter object will be deleted
when the paranmeter is removed fromthe list, otherwise not (default).

ngcbPARAM * Add(const char *paranName, char initVal);

ngcbPARAM * Add(const char *paranmNanme, int initVal);

ngcbPARAM * Add(const char *paranNane, float initVal);

ngcbPARAM * Add(const char *paranNane, double initVal);

ngcbPARAM * Add(const char *paranNane, const char *initVal);

ngcbPARAM * Add(const char *paranName, const char *initVal, int type);
Add a paraneter to the list. If the initial value

is given as string , optionally a type can be specified, which

has to be one of:

ngcbPARAM CHAR -
ngchPARAM | NT -

logical ("T or '"F or 0 or 1)
32-bit signed integer

ngcbPARAM FLOAT -

ngchbPARAM DOUBLE
ngchbPARAM STRI NG

A pointer to the new paraneter object
paranet er al ready exists,

32-bit floating point
64-bit floating point
string
(‘max.

| engt h: ngcbPARAM MAX_STRI NG = 256)

is returned. In case the
a pointer to the existing paraneter

18 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

object is returned. No check for NULL-pointer return value required.

ngcbPARAM * Add(const char *nane);
Add a paraneter of undefined type to the list.

void Cear();
Renmove al |l paraneters.

voi d Renove(ngcbPARAM *par am ;
Renove paranmeter object fromlist - resolve by object.

voi d Renmove(const char *paranmNane);
Renmove paraneter object fromlist - resolve by paraneter nane.

ngcbPARAM * Get (const char *paramNane) ;
Searches the list for a parameter object with the given nane
and returns a pointer to the object. If the paraneter is not in
the list, a NULL pointer is returned.

NgCcbPARAM LI ST *First();
Returns the list entry point for "wal king" through the |ist
(see exanpl e bel ow).

nt Set(const char *paramName, char paranval ue);
nt Set(const char *paranmNane, int paranVal ue);
nt Set(const char *paramNanme, float paranVal ue);
nt Set(const char *paranmNane, doubl e paranVval ue);
nt Set(const char *paramName, const char *paranVal ue);
Conveni ence functions to set a paraneter value in the list.

nt Val Char (const char *paranmNanme, char *paranVal ue);
nt Val Int(const char *paranmNanme, int *paranVal ue);
nt Val Fl oat (const char *paranmNane, float *paranVal ue);
nt Val Doubl e(const char *paranNane, doubl e *paranval ue);
nt Val String(const char *paranmName, char *paranVal ue);
Conveni ence functions to get a paraneter value fromthe |ist.

oid ArCrlList(int instance);
Renmpve a controll er (=sequencer) instance defined by its
(sequential) instance nunber fromall paraneters inside the I|ist.

oid drAcqList(int instance);
Renmove an acquisition process defined by its sequential instance
number fromall paranmeters inside the |ist.

PUBLI C DATA MEMBERS
ngcbPARAM cl ass:

char nane[64]; - paranmeter nane
char alias[64]; - paranmeter alias nane
char format[16]; - format for output of the Get(), Val String()

met hods. The default depends on the type:

ngcbPARAM CHAR: " %"

ngcbPARAM | NT: " %d"

ngcbPARAM FLOAT/ DOUBLE: " 9%6G'
ngcbPARAM STRI NG not applicable

int fits; - flag to put the parameter into the
FI TS- header
char commrent|[28] ; - optional conment for FITS-header

char unit[4]; - optional unit

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

int flag; - storage space for application specifc flags
(initial value is 0)

int ctrllList; - controll er nodul es (sequencer), where the
parameter is used. This is a bit-list
mai ntai ning up to 32 controller nodul es
(bit O for 1st. module, bit 1 for 2nd. nodul e
and so on).

int acqli st; - acquisition -processes, where the paraneter
is used. This is a bit-list maintaining up
to 32 acquisition processes (bit 0 for
1st. nodule, bit 1 for 2nd. nodule and so on).

ngcbPARAM LI ST cl ass:
ngcbPARAM * par am - pointer to parameter object
ngcbPARAM LI ST *next; - pointer to next list elenment

RETURN VALUES

If not specified differently, all functions return ngcbhSUCCESS
in case of success. Otherw se ngcbFAILURE is returned and the
ErriMsg() method will return a detailed error nessage.

EXAVPLES
Exanpl e for "wal ki ng" through a paraneter |ist:

NngcbPARAM LI ST | i st;
ngcbPARAM LI ST *|;
ngcbPARAM * p;

/1 Add some paranmeters to the list...
list.Add(" Paraneter1", "value");

list.Add(" Paraneter2", (char)l);

list.Add(" Paraneter3", (int)5);

list.Add(" Paraneter4”, (float)O0.1);
|ist.Add("Paraneter5", (double)O.2);

list.Add(" Paraneter6", "1.1", ngcbPARAM FLOAT);

p =1list.Get("Paranmeter3");
if (p !'= (ngchPARAM *) NULL)

strcpy(p->format, "Ox%®8x");
}

/] Now just print the whole |ist
f (r=l

/
o] I=list.First();!!=(ngcbPARAM LI ST *) NULL; | =I - >next)

r
{

p = |->param

printf("% = 9%\n", p->name, p->CGet());
}

20 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.10 ngcbIFC Class

NAME

ngcbl FC - NGC interface class
SYNOPSI S

#i ncl ude <ngcbl FC. h>

ngcbl FC i nterface();

DESCRI PTI ON

This class defines the general basic interface functions

(Open, Close, Read, Wite, etc.) to the NGC front end.

It is functional for a locally installed standard NGC interface
board. In case the board is installed on another conputer a

driver interface process has to be started on that computer.

Apart fromthe process startup which should happen via the

over| oaded ExecServer()/Kill Server() nethods, the functionality

of the interface should be transparent to the application.

Most public functions can be overl oaded to provide the appropriate
client part of an interprocess comunication.

PUBLI C METHODS

ngcbl FC() ;
Constructor method.

ngcbl FC(const char *nane);
Constructor nethod with default interface nane.

virtual ~ngcbl FC();
Destructor method. This will in any case call the C ose() nethod.

virtual int Open();

virtual int Open(const char *nane);
Opens an interface device. If <nanme> is not specified
the default device name fromthe constructor is taken.
If a driver interface process is used, the name wll
contain the informati on which interface process to
start on which host in an application specific format.

virtual int dose();
Closes an interface device.

virtual int ExecServer()
Start driver interface process. The information which
process to start on which host should be retrieved from
t he Name() met hod.

virtual int Kill Server()
Exit/Kill the driver interface interface process.

virtual int Connect();
Only for driver interface interfaces: connect through to device
(i.e. send a conmand to the driver interface process to
open the device).

virtual int D sconnect();
Only for driver interface interfaces: disconnect fromthe device
(i.e. send a command to the driver interface process to
cl ose the device).

virtual int Fd();
Returns the (renote-) interface file descriptor.

virtual int Pid();
Returns the process id of the driver interface process or zero
in case no driver interface process is used.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 21

virtual const char *Host();
Returns the host name of the driver interface process or a NULL
pointer in case no driver interface process is used.

virtual int Reset();
Resets/intializes an interface device.

virtual int Read(int *buffer, int size);
Read <size> words from device. The function returns the status
word of the operation (see below for further details).

virtual int Wite(int *buffer, int size);
Wite <size> words to device. The function returns the status
word of the operation (see below for further details).

virtual int ReadAddr(ngcb_route_t route,
int addr, int *buffer, int size, int *result);
Reads size words from <addr> into buffer. <result> returns
a status word for the operation (see below for further details).
The operation inplenents a 4-byte-swap in case the calling
conputer has a big-endian architecture. The ngcb_route_t
structure contains the follow ng el ements:

int nunHdr; - nunber of headers to target including
the term nating <0x2>
i nt hdr[ngchMAX_MOD] ; - array of headers including the

term nating <0x2>

virtual int WiteAddr(ngcb_route_t route,
int addr, int *buffer, int size, int *result);
Wites size words frombuffer to <addr>. <result> returns
a status word for the operation (see below for further details).
The operation inplenents a 4-byte-swap in case the calling
conputer has a big-endian architecture.

i nt ReadAddr (ngcb_route_t route, int addr, int *buffer, int size);

int WiteAddr(ngcb_route_t route, int addr, int *buffer, int size);
Sane as above but these interfaces hide the result code in case it
is not needed. These nethods call the virtual ReadAddr()/WiteAddr()
nmet hod descri bed above and need not to be overl oaded by specific
interface inplenmentations.

virtual int Status()
Returns the status of the interface board.

virtual int Tinmeout(int seconds);
Sets a new tineout for read/wite operations (in seconds).

virtual int Tinmeout();
Returns the current timeout (in seconds);

virtual int Running();
Returns 1 in case the driver interface process is running.
O herwi se the function returns zero. This nmethod is
fully application specific.

virtual int Connected();
Returns 1 in case the driver interface process is connected
to the device (i.e. device is open). Otherw se the function
returns zero.

virtual void Verbose(const char *format, ..
Verbose nethod. A nessage is passed to the ver bose out put dependi ng
on the current verbose level. If the verbose level is zero,
the message is ignored.

virtual void Log(const char *format, ...);
Log net hod.

22 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

virtual int Sin(int flag)
Switch to sinulation node.

int WiteBuffer(int *buffer, int size, int *result)
Wites a formatted buffer to the device. The format is:
<hdr1 hdr2 ... hdrN address datal data2 ...>
<result> returns the status word for the operation. An error
nmessage can be retrieved via the Result2Err() nethod
The operation inplenents a 4-byte-swap in case the calling
conputer has a big-endian architecture. This nethod calls
the virtual WiteAddr() nmethod and needs not to be
over| oaded by specific interface inplenentations.

char *Nanme();
Returns the current interface(-device) name, as specified in
the constructor or in the last Qpen() call. Can also be used
to set a new (default-) nane.

char *Type()
Returns a pointer to the interface type identifier string.

char *Arg();
Returns a pointer to the interface argument string. The
argunment string is intended to be passed to a driver interface
process as comand |ine.

voi d I nstance(int instance);
Sets an interface instance nunber. This ist just intended
to store an outside reference index, to be given back
via the Instance() nethod. The instance nunber is not
used or changed inside this base interface class.

int Instance();
Returns the interface instance nunber.

int Standby();
Bring interface device to standby state. The driver interface process
(if required) is alive, but the physical device is disconnected
(i.e. closed).

int Online();
Bring interface device to on-line state. The driver interface
process (if required) is alive and the physical device is
connected (i.e. opened). If the device was di sconnected before
(i.e. was in standby- or off-state), a hardware reset is perforned.

int Of();
Bring interface device to off-state. The physical devices is
di sconnected and the driver interface process is not alive.

char *ErrMsg();
Returns the current error message in case of failure

i nt Bi gEndi an();
Returns 1 in case the conputer architecture is big-endian.
QG herwi se the function returns zero.

void Result2Err(char *errStr, int resultCode)
Fills <errStr> with an error string nmatching the result code.

PUBLI C DATA MEMBERS

int ioError; - Indicates that the preceeding transacti on caused
an i/o error (generally the connection should be
reset in that case).

int |ocal; - If set to 1 the interface device is local. Oherw se
it isinstalled on on a different conputer and
comuni cation is done via a driver interface process.

NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

int sim

int xterm

int verboselLevel;

int |ogLevel;

- Interface simulation level (0O = nornal node).

- Start driver

- Log | evel

interface process in new termnal.

- Verbose | evel

char thisHost[64]; - Host where this instance is |aunched

ngcb_vb_t verboseHandl er;
verbose handler to be used instead of the built-in

Ext er nal
one:

voi d nyHandl er (int flag,

const char

*format, ...)

The usage is the as printf plus an additional flag which can

be one of:
ngcbVB_PRI NT - pass nessage to verbose out put
ngcbVB_LOG - log nmessage

ngcb_es_t err StateHandl er;

Ext er nal

error-state handl er of type:

voi d nyHandl er (char *erns,

RETURN VALUES

If not specified differently, all

of success.

ngcbl FC *nodul e)

functions return ngcbSUCCESS i n case
O herwi se ngcbFAILURE is returned and ErrMsg() will
detail ed error nessage.

contain a

The status word for device i/o (resultCode) may have the follow ng

val ues:

ngcbRES_SUCCESS (0) -

successf ul

operation

Bit 0..7 - operation status byte (ngcbRES ERR IO is not set):

ngcbRES_OP_I NVALI D -
ngcbRES_OP_FAI LURE -
ngcbRES_ERR_HDR -
ngcbRES_ERR_ADDR -
ngcbRES_ERR _DATA -
ngcbRES_ERR_XSI ZE -
ngcbRES_ERR NOT_OPEN -

Bit 8..

16 -

conbi nati on

ngchbRES_ERR | O -
ngcbRES_ERR | NTR -
ngcbRES_ERR_OPEN -
ngcbRES_ERR RESET -
ngcbRES_ERR TI MEOUT -
ngcbRES_ERR LI NK_DOM -

ngcbRES_ERR_LI NK_HARD -
ngcbRES_ERR LI NK_SOFT -
ngcbRES_ERR_LI NK_FRAM -

invalid address or function
operation failed

wrong header
wrong address

wrong data _
wong transfer size
device is not open

of error bits (ngchRES ERR IO is set):

i/o error
i/o interrupted

error opening device
error resetting device
i/o tineout

l'i nk
I'i nk
l'i nk
l'i nk

channel
channel
channel
channel

down

hard error
soft error
fram ng error

An error string can be retrieved via the Result2Err() nethod.

Usual ly the error

be required to have the real

SEE ALSO

ngcbDr vCom(3)

message is also in ErrMsg(), but it mght

error code to react on individual
error conditions w thout doing anbiguous string parsing again.

23

24 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.11 ngcbIFC_MSG Class

NAME

ngcbl FC_MSG - CCS nessage systeminterface class
SYNOPSI S

#i ncl ude "ngcbl FC_MSG h"

ngcbl FC_MSG connecti on()

PARENT CLASS
ngcbl FC_MSG public ngchl F

DESCRI PTI ON
CCS nessage systeminterface class. The parent class ngcblF is
overl oaded with the appropriate client functions
- see nman-page for ngcbl FC(4). Interface type is "ccs".
The name consists of the tuple "environment, server Nane" or
only "environnent"” (in that case the default driver interface process
<ngchb2Drv> woul d be started).

PUBLI C METHODS

ngcbl FC_MSG eccSERROR *s);
Construct or nethod.

ngcbl FC_MSG@ const char *name, eccsSERROR *s);
Constructor nmethod with default nane.

ngcbl FC_MSG const char *instance, const char *name, eccsERROR *s);
Constructor nmethods with instance and default nane.

virtual -ngcbl FC_MBQX);
Destruct or net hod.

RETURN VALUES

If not specified differently, all functions return ngcbSUCCESS
in case of success. Otherw se ngcbFAILURE is returned, an error
is added to the error-stack and the ErrMsg() method will return
a detailed error nessage.

SEE ALSO
ngcbl FC(4), nmsgMESSAGE(4)

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.12 ngcbSIM Class

NAME

ngcbSI M - NGC front-end nodul e sinul ator class
SYNOPSI S

#i ncl ude <ngcbSIM h>

ngcbSI M nodul e() ;

DESCRI PTI ON

NGC front-end nodul e simul ator class. The sinulator configures

itself dynamically via the system headers sent with the wite()
systemcall. A new sinulator object is created recursively for

every NGC hardware nodul e defined via the link configuration register.
It provides all NGC hardware registers including sequencer pattern-
and program RAM The voltage setting is sloped to the telenetry val ues
via the DAC - ADC conversion function. The nessage packets are routed
to the right destination instance using the information in the routing
headers. The result is automatically passed back recursively to the
main entry point (first ngcbSIMinstance). Timeouts and errors can

be sinul ated by accessing unused addresses at any nopdul e instance:

NngchTESTERR_NO_ACK (0x100) - no acknow edge
ngcbTESTERR | VLD (0x101) - invalid address
ngcbTESTERR _SEQ EMPTY (0x200) - sequencer FIFO becones enpty
ngcbTESTERR _SEQ | DLE (0x201) sequencer goes to idle state

PUBLI C METHCDS

ngchbSI M) ;
Constructor method.

virtual ~ngcbSIM);
Destruct or met hod.

int Status();

voi d Tinmeout (i nt seconds);
Set timeout in seconds. This will inplement an appropriate
del ay for the ngcbTESTERR _NO ACK error sinulation or in
case the required up-stream channel s had not been enabl ed.

voi d Reset();
Reinitialize all register val ues.

int Wite(int *buffer, int size);
Handl e the wite systemcall on the main entry point
(first instance).

int Execute(int *fifoBuf, int *buffer, int size, int length);
Extract next header element from <buffer> and either execute
a (private) read-fromaddress/wite-to-address function on this
i nstance or cut the header element fromthe route and pass
the buffer to one of the next connected sinulator objects
as described in the header part of the buffer. The <fifoBuf>
represents the RX-FIFO on the hardware interface device.
Al'l results are stored in that buffer and can finally
be read-out via the Read() nethod. The handshake signals are
set properly by the responding simulator instance.

voi d Read(int *buffer, int size);
Handl e the read systemcall on the main entry point
(first instance).

virtual void Verbose(const char *format, .
Verbose nethod. A nessage is passed to the verbose out put dependi ng
on the current verbose level. |If the verbose |level is zero,
the nessage is ignored.

25

26 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

virtual void Log(const char *format, ...);
Log met hod.
int *Fifo();

Returns a pointer to the FIFO buffer, where to store the
the actual data. Methods overl oading the ReadCB() call back
nmust al ways store the result into here.

void Sync();
Handl e the sychnronous start signal;

virtual void ResetCB()
Call back to initialize additional stuff.

virtual int WiteCB(int addr, int *buffer, int size);
Call back to install additional functionality to the
write-to-address function accessing this instance.

virtual int ReadCB(int addr, int size);
Call back to install additional functionality to the
read-from address function accessing this instance.

PUBLI C DATA MEMBERS

ngcbSI M *mod[ngcbNUM_LI NK] ; Next connected nodul es

ngcbhSlI M * nodO; - First nodule (entry point)
i nt verboselLevel; - Verbose | evel
int |oglLevel; - Log Il evel

ngcb_vb_t verboseHandl er;
Ext ernal verbose handler to be used instead of the built-in
one:

voi d nyHandl er(int flag, const char *format, ...)

The usage is the as printf plus an additional flag which can
be one of:

ngcbVB_PRINT - Pass message to verbose out put
ngcbVB_ LOG - Log nessage

PRI VATE METHCDS

int WiteAddr_(int addr, int *buffer, int size);
Wite-To-Address function to be handl ed by this sinulated
nodul e instance. The function will call the WiteCB() call back
in case the address could not be resol ved.

i nt ReadAddr _(int addr, int size);
Read- From Address function to be handl ed by this simulated
nodul e instance. This will store the result into the
gl obal RX-FIFO buffer. he function will call the ReadCB() call back
in case the address could not be resol ved.

RETURN VALUES

The Wite() nethod returns the nunber of data words witten.
A zero value indicates an error and the status should be checked
via the Status() nethod.

The Fifo() nmethod returns a pointer to the FIFO buffer, where to
store the the actual data for read-from address operations.

The Status() method returns the content of the interface status
register.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 27

The Execute() and the ReadCB()/WiteCB() callbacks return a result
code for the executed operation. The result code consists of the
following or’ed bit val ues:

ngchl FC_STAT_ACK - acknow edge received

ngcbl FC_STAT_VALI D - address was valid

ngchSI M_UPDATE_STATUS - status invariant operation (all header 0x8
functions accessing the |ocal configuration
register)

SEE ALSO
ngcbl FC(4), ngcbMOD(4)

28 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.13 ngcbNET Class

NAME

ngcbNET, ngchBOARD - NGC network structure classes
SYNOPSI S

#i ncl ude <ngcbNET. h>

ngcbBCOARD board();
ngcbNET network();

DESCRI PTI ON

NGC network structure classes. These cl asses descri be a nodul e
network connected to the physical interface. The network

may have a chain- or a tree-structure. The ngcbBQOARD cl ass
descri bes one physical board in the network. The ngcbNET

cl ass describes the overall network. The boards need to

be enabl ed after reset. An appropriate Enable() nethod
provides this functionality for each board.

PUBLI C METHODS
ngcbBOARD cl ass:

ngcbBOARD) ;
Constructor method.

virtual ~ngcbBQARD;
Destructor nmethod deleting all boards on the downlinks.

i nt Enabl e(ngcbl FC *dev, char *erns);
Enabl es this board and all connected boards on the
downl i nks.

i nt Boardl nfo()
Updat e board information. This retrieves the product codes and
the actual board tenperature fromthe NGC hardware.

voi d Dump(char *s);
voi d Dump(FILE *s);
Dunp board information to a string or to an output stream

ngcbNET cl ass:

NgcbNET() ;
Constructor mnethod.

ngcbNET(ngcbl FC *interface);
Constructor nethod defining the interface device to access
t he NGC net wor k.

int Add(ngcb_route_t route, char *erns);
Add a route to a nodule to the network. This will automatically
create not yet existing boards on the route. The ngcb_route_t
structure contains the follow ng el ements:

i nt numHdr; - nunber of headers to target including
the term nating <Ox2>
i nt hdr[ngcbMAX_MOD] ; - array of headers including the

term nating <0x2>

i nt Enabl e(char *erms);
Enabl e t he whol e network.

voi d Dunmp(char *s);
voi d Dunp(FILE *s);
Dunmp network information to a string or to an output stream

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

PUBLI C DATA MEMBERS
ngcbBCOARD cl ass:

ngcbl FC *dev;

i nterface device (passed through)

ngch_route_t route; - route to board

i nt nunlLi nk; - nunber of downlinks to activate
i nt boardl d; - uni que board id

i nt product Code; - Product code

int revision; - Revi si on nunber

int serial Nurmber; - Derial nunber

int tenperature; - Board tenperature

boards on downli nks

ngcbBCQARD *boar d[ngcbNUM_LI NK] ;
ngcbNET cl ass:
ngcbBOARD nai nBoard; - first board in network
ngcbl FC *dev; - interface device to access the NGC network
RETURN VALUES
If not specified differently, all functions return ngcbSUCCESS

in case of success. Ot herw se ngcbFAILURE is returned and the
<erms> will return a detailed error nessage.

SEE ALSO
ngcbl FC(4)

29

30 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.14 ngcbOBJ Class

NAME

ngcbOBJ - general NGC object class
SYNOPSI S

#i ncl ude <ngchOBJ. h>

ngcbOBJ obj ect ();

DESCRI PTI ON

General NGC object class. This is the parent class of both the
NGC har dwar e nodul es and the acquisition process interface.

PUBLI C METHODS

ngcbOBJ();
Constructor method.

void I nstance(int n);

int Instance();
Functions to trace an instance nunber for this object.
If not set, the instance is zero.

int LogErr(char *pos)
Logs the actual code position and then calls the Failure()
call -back. CGenerally intended to be be called with the
argunment macro NGCB_CCDE_PCS.

virtual char *ErrMsg();
Returns the current error nmessage in case of failure.

virtual void Verbose(const char *format,

virtual void Verbose(int I|evel, const char ;‘fbrrrat, N
Verbose nethod. A nessage is passed to the verbose output dependi ng
on the current verbose level. |If the verbose level is zero,

the nessage is ignored. The second version only prints the nmessage
if the verbose | evel execeeds the given <l evel >.

virtual void Log(const char *format, L)

virtual void Log(int level, const char *format, ...);
Log method. If the verbose level is zero, the nessage is ignored.
The second version only logs the message if the |og | evel
execeeds the given <l evel >.

virtual int Success();

virtual int Failure();
Cal | backs for SUCCESS and FAILURE return. These are defined
by default to return ngcbSUCCESS/ ngcbFAI LURE. Further error
handl i ng/ | oggi ng can be added here. Applications may al so
use the return(ngcbMOD _ERR) nacro, which will additionally
|l og the current code-position before executing the Failure()
cal | back.

PUBLI C DATA MEMBERS

int xterm - Start sub-processes in new termnal.
i nt verboselLevel; - Verbose |evel
int |oglLevel; - Log I evel

ngcb_vb_t verboseHandl er;
Ext ernal verbose handler to be used instead of the built-in
one:

voi d nyHandl er(int flag, const char *format, ...)

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

The usage is the as printf plus an additional flag which can

be one of:
ngcbVB_PRINT - pass nessage to verbose out put
ngcbVB_LOG - l og nessage

RETURN VALUES

If not specified differently, all functions return ngcbSUCCESS
in case of success. Otherw se ngcbFAILURE is returned and the
ErrMsg() method will return a detailed error message

The Success()/Failure() callbacks can be used to overload the
return values and to add sone individual error handling/l ogging.

31

32 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.15 ngcbMOD_CLASS

NAME

ngcbMOD - general NGC front-end nodul e cl ass
SYNOPSI S

#i ncl ude <ngcbMOD. h>

ngcbMOD modul e() ;

PARENT CLASS
ngcbMOD: public ngchOBJ

DESCRI PTI ON

General NGC front-end nodule class. This is the parent class
of all NGC front-end nodul es (sequencer, CLDC, ADC).

PUBLI C METHODS

ngcbMOD(ngcb_route_t);
Constructor nethod specifying the local route to the
nodul e i nside the front-end (header).

ngcbMOD(ngcbl FC *dev, ngcb_route_t);
Constructor nethod specifying the interface device and
the local route to the nodule inside the front-end (header).

virtual ~ngcbMOD();
Dest ruct or net hod.

ngcb_route_t *Route();
Returns the local route to the nodul e inside the
front-end (header).

ngcbl FC *Dev();
Returns the interface device.

voi d Dev(ngcbl FC *dev);
Assings a new device to the nodul e.

int Initialize();
Initialize nodule (e.g. read product information).

i nt ReadAddr (int addr, int *buffer, int size);
Reads size words from <addr> into buffer.

int WiteAddr(int addr, int *buffer, int size);
Wites size words frombuffer to <addr>.

int Tenperature(int *t);
Read tenperature of the board, where this nodul e resides.

virtual void Reset();
Call -back function to align soft-states after reset.

virtual int Online();
Cal | -back function executed when going to ONLI NE-state.

virtual int Standby();
Cal | -back function executed when going to STANDBY-state.

PUBLI C DATA MEMBERS
char nanme[64]; - Optional name for this nodul e

ngchl FC *dev; - Interface device assosiacted with this nodul e

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 33

ngcb_route_t route; - Local route to the nodul e inside the
front-end (header)

i nt product Code; - Product code
int revision; - Revi si on nunber
int serial Nunber; - Serial nunber

RETURN VALUES

If not specified differently, all functions return ngcbSUCCESS
in case of success. Otherw se ngchbFAILURE is returned and the
ErrMsg() method will return a detailed error nessage.

The Success()/Failure() callbacks fromthe ngcbOBJ class can

be used to overload the return values and to add sone i ndi vi dual
error handling/ | oggi ng.

SEE ALSO
ngchOBJ(4), ngcbl FC(4)

34 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.16 ngcdcsCLDC_CLASS

NAME

ngcdcsCLDC_CLASS - NGC cl ock- and bias-driver class
SYNOPSI S

#i ncl ude <ngcdcsMOD_CLASS. h>

ngcdcsCLDC _CLASS cl dc();

PARENT CLASS
ngcdcsCLDC_CLASS: public eccsERROR_CLASS, public ngcbhMXD

DESCRI PTI ON
NGC cl ock- and bi as-driver class.

PUBLI C METHODS
ngcdcsCLDC_CLASS(ngcb_route_t route);

Constructor nmethod specifying the |local route to the
nodul e inside the front-end (header).

ngcdcsCLDC_CLASS(ngchl FC *dev, ngcb_route_t route);
Constructor nethod specifying the interface device and
the local route to the nodul e inside the front-end (header).

virtual ~ngcdcsCLDC CLASS();
Destruct or mnet hod.

voi d Reset();
Align soft-states after reset;

ccsCOWPL_STAT Online(int check=1)
Hook net hod, which is executed when going online. If the
<check> flag is set, then the telenetry values are checked
agai nst the current voltage setup before going on-line.

ccsCOVPL_STAT St andby();
Hook met hod, which is executed when going standby.

ccsCOWVPL_STAT Cal i brate();
Calibrate (of fset conpensation). This will disable the
CLDC out put first.

void ClearCalibration();
Clears the calibration.

ccsCOWPL_STAT Check();
Check the telemetry against the current setup. An error is
returned, when the deviation of one of the telenmetry val ues
exceeds the margin given in the public data menber <margin>.

ccsCOWPL_STAT Sel ftest();
Performa selftest. The output is disabled before the test
starts. The voltage setup has to be re-|loaded afterwards.

ccsCOWPL_STAT O f set d k(doubl e volt);
Set the offset for the clock voltages.

ccsCOWPL_STAT O f set DC(doubl e vol t);
Set the offset for the bias voltages.

doubl e O fsetd k();
Returns the offset for the clock voltages.

double O fsetDC();
Returns the offset for the bias voltages.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 35

ccsCOWPL_STAT DacChan(int chan, double volt)
Set voltage on a specific DAC channel.

ccsCOWPL_STAT Vol tageDC(i nt num double volt, int rangeCheck=1);
Set bi as vol t age.

ccsCOWPL_STAT Vol taged k(int num int |, double volt, int rangeCheck=1);
Set voltage for clock level <I>.

ccsCOWPL_STAT Vol taged k(int num ngcdcs_cl kv_t cv, int rangeCheck=1);
Set voltage for clock (all levels).

ccsCOVPL_STAT Setup();
Apply the voltage setup as specified in the public clock and
DC-vol t age arrays.

ccsCOWPL_STAT Tel Chan(int chan);
Set telenetry channel.

ccsCOVPL_STAT Tel Dat a(doubl e *vol t);
Read current telenetry data.

ccsCOWPL_STAT Tel DC(i nt num double *volt);
Tel enetry for bias voltage.

ccsCOWVPL_STAT Tel d k(int num int |, double *volt);
Tel enetry for clock voltage |evel <I>.

ccsCOWPL_STAT Tel A k(i nt num ngcdcs_clkv_t *cv);
Telemetry for clock voltage (all |evels).

i nt Enabl ed();
Returns 1 in case the CLDC output is enabl ed.

ccsCOWPL_STAT Enabl e();
Enabl e CLDC out put .

ccsCOVPL_STAT Di sabl e();
Di sabl e CLDC out put.

const char *StatusString();
Return a string matching the CLDC status (enabl ed or disabled).

ccsCOWVPL_STAT Zero();
Set all CLDC voltages and all offsets to zero volts.

ccsCOWPL_STAT Monitor(int num int chan);
Set cl ock channel nunber for clock nmonitor. <nume specifies
the clock nonitor number (1 or 2).

virtual double ConvertTel (int val ue);
Convert digital value of telemetry ADC to a voltage.

virtual int Volt2Reg(double *volt, int chan, double corr=1.0);
Convert voltage for DAC channel <chan> to a digital val ue.
<corr> specifies a correction factor to be applied.

virtual double Reg2Volt(int regVal, int chan, double corr=1.0);
Convert register value of DAC channel <chan> to a voltage.
<corr> specifies a correction factor to be applied.

virtual ccsCOVPL_STAT LoadCf gFil e(const char *fil eName=NULL);
Load voltage configuration file. This is supposed to fill
the public clock- and DC-voltage setup arrays. A setup is done
af t er war ds.

36 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

virtual ccsCOWL_STAT SaveCfgFil e(const char *fil eNane);
Save current setup to a voltage configuration file.

PUBLI C DATA MEMBERS
i nt status; - Soft status:

ngcbCLDC _STAT_ENABLED - enabl ed
ngcbCLDC_STAT_DI SABLED - di sabl ed

i nt aut oEnabl e; - Enabl e vol tage out puts when goi ng on-1ine.
Default is O.

char cfgFil e[256]; - Current voltage file

ngcdcs_cl k_t *cl k; - Array of clock voltages

ngcdcs_cl kv_t *cl kTel ; Array of saved clock voltages telemetry val ues

int nund k; - Number of clock voltages

doubl e of fset d k; - Ofset for clock voltages (default is 0.0)
ngcdcs_dc_t *dc; - Array of bias voltages

doubl e tel emetryGai n; - Gin factor for telemetry (default is 1.5,

whi ch corresponds to a range of +-15 V).
doubl e *dcTel ; - Array of saved bias voltages tel enetry val ues

int tel Fl ag; - Flag to update telenmetry. This is always set
to one, in case a voltage has changed. It
cane be used to trace the voltage setting.
Miust be reset by the instantiating application.

int nunDc; - Nurber of bias voltages

doubl e of f set DC; - Ofset for bias voltages (default is 0.0)

int cl kMonil; - Clock on nonitor 1

int cl kMbn2; - Clock on nmonitor 2

doubl e margi n; - Margin for telenetry check (in volts).
The default value is 0.0 volts (telenetry
di sabl ed).

The ngcdcs_cl k_t object contains the foll ow ng nenbers:
ngcdcs_dc_t | evel [ngcdcsCLDC DCLK]; - setup for all levels

The ngcdcs_dc_t object contains the follow ng nenbers:

doubl e volt; - Setup val ue

doubl e range[2] ; - Range

doubl e dacCorr; - DAC correction factor

doubl e tel Corr; - Telemetry correction factor
i nt daccChan; - DAC channel

int tel Chan; - ADC channel for telenetry
char name[64]; - Nane of the voltage

The ngcdcs_cl kv_t object contains the nmenbers:
doubl e vol t[ngcdcsCLDC DCLK]; - Voltage values for all |levels

RETURN VALUES

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

If not specified differently, all functions return SUCCESS
in case of success. Otherwise FAILURE is returned and an
error is added to the error-stack.

CAUTI ONS

Al'l channel nunbers (clock, bias, DAC, telenetry, clock-nonitor),
whi ch are given as argunment to the above nmenber functions,
start with zero!

SEE ALSO
ngcbl FC(4), ngcbMOD(4)

37

38 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.17 ngcdcsSEQ_CLASS

NAME

ngcdcsSEQ CLASS - NGC sequencer cl ass
SYNOPSI S

#i ncl ude <ngcdcsMOD_CLASS. h>

ngcdcsSEQ CLASS seq();

PARENT CLASS
ngcdcsSEQ CLASS: public eccsERROR _CLASS, public ngcdcsMID

DESCRI PTI ON
NGC sequencer cl ass.

PUBLI C METHCDS

ngcdcsSEQ CLASS(ngcb_route_t route);
Constructor nethod specifying the |ocal route to the
nodul e inside the front-end (header).

ngcdcsSEQ CLASS(ngchl FC *dev, ngcb_route_t route);
Constructor nethod specifying the interface device and
the local route to the nodul e inside the front-end (header).

ngcdcsSEQ CLASS(ngchb_route_t route, ngcbPARAM LI ST *p);
Constructor nethod specifying the local route to the
nodul e inside the front-end and a pointer to a dynamc
parameter |ist.

ngcdcsSEQ CLASS(ngchl FC *dev, ngcb_route_t route, ngcbPARAM LI ST *p);
Constructor nethod specifying the interface device and
the local route to the nodul e inside the front-end and
a pointer to a dynamc paraneter |ist.

virtual ~ngcdcsSEQ);
Destructor nethod.

voi d Reset();
Align soft-states after reset;

ccsSCOVWPL_STAT Online();
Hook met hod, which is executed when goi ng online.

ccsCOVPL_STAT St andby();
Hook met hod, which is executed when goi ng standby.

ccsCOVPL_STAT Sel ftest();
Performa sel ftest.

ccsCOVPL_STAT Trigger Mode(int flag);
Enabl e (flag = 1) or disable (flag = 0) the trigger node. Wen the
trigger node is disable the sequencer does never wait for the
external trigger.

ccsCOWPL_STAT RunCirl (int flag);
Enable (flag = 1) or disable (flag = 0) external run-control
for this instance. Wen run-control is disabled this sequencer
instance will not be started automatically via the run-signal
Iine on the backpl ane.

ccsCOVPL_STAT Start(int sync);
Start sequencer. If the <sync>-flag is set to 1, then the run-signal
on the backplane is also raised to start further sequencer
i nstances on the sanme backpl ane.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 39

ccsCOWVPL_STAT Step(int sync);
Start sequencer and run till next break-point. If the <sync>-flag
is set to 1, then the run-signal on the backplane is also raised
to start further sequencer instances on the sane backpl ane.

ccsCOWPL_STAT Stop(int force=0);
Stop sequencer immediately. If the force-flag is set to 1 the
conmand will be sent regardl ess of the actual sequencer state.
Oherwise it will only be sent when not in idle state.

ccsCOVPL_STAT Break();
Let sequencer stop at next breakpoint.

ccsCOWPL_STAT Break(int tineout, int interval =100);
Let sequencer stop at next breakpoint and wait w th timeout
(in seconds) for sequencer programtermnination. A polling interval
in mlliseconds can be given (default is 100).

ccsCOVPL_STAT Wait(int event, int timeout, int interval =100);
Wait with tinmeout (in seconds) for sequencer program event.
A negative value will set an infinite timeout. A polling interval
in mlliseconds can be given (default is 100). The routine returns
imediately with an error, in case the sequencer goes to failure
state. The event can be one of the foll ow ng:

ngchSEQ STAT _WAI TING - sequencer is waiting for trigger

ngchSEQ STAT_PRGEND - programend bit is set or sequence
has term nted

ngchSEQ STAT_BREAK - break-point has been reached or
sequence has term nated

i nt BreakTi meout (doubl e *tinmeout);
Returns a timeout (in seconds) to be used for the break-comrand.
This is the maximumtine which may pass until a break-point is
reached. If none of the patterns executed by the current program
contains a break-point, or if the programcontains infinite | oops
wi t hout any break-point, the routine will return -1 (= infinite)
and the calling application should use the Stop() command rat her
than the Break() conmand. If no valid clock pattern setup or no
valid programis currently | oaded, an error is returned.

ccsCOVPL_STAT Trigger();
Send a trigger conmand.

ccsCOWVPL_STAT Status(int *hwStatus);
Get sequencer hardware status.

voi d NewSt atus(int newStatus);
Set a new status (soft-status only).

const char *StatusString();
Returns a string matching the sequencer soft state
(idle, running, failure).

int Runni ngState();
Returns 1 if the sequencer is in running state. O herw se
zero is returned.

int FailureState();
Returns 1 if the sequencer is in failure state. O herw se
zero i s returned.

ccsCOWPL_STAT Pat Ti ne(ngcdcs_pat _t pat, int apply=1);
Conmput e execution tine of pattern <pat>.

i nt Pat Nunfst at es(ngcdcs_pat _t pat);
Conput e nunber of states in pattern <pat>.

40

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

voi d DunpPat (char *reply, ngcdcs_pat_t pat);
Dunp pattern <pat> to a string.

voi d St orePat Set up();
Store all global patterns to private copy.

ccsCOWPL_STAT Rest orePat Set up() ;
Restore all global patterns fromprivate copy.

ccsCOWVPL_STAT Set upPat () ;
Downl oad all defined gl obal patterns.

ccsCOVPL_STAT Set Pat (i nt idx, ngcdcs_pat_t pat);
Set clock pattern. This will also apply the global dwell tine
factor/add if applicable. If the operation was successful,
the pattern is copie to the global pattern structure at the
gi ven index <idx>.

ccsCOWPL_STAT Get Pat (ngcdcs_pat _t *pat);
Retrieve a pattern defined by the addr ess (pat.addr) fromthe
sequencer pattern ram

ccsCOWPL_STAT Get Pat (i nt idx, ngcdcs_pat_t *pat);
Retrieve a pattern by index fromthe sequencer pattern ram
(idx = pattern nunber).

ccsCOWPL_STAT Set Patd k(int idx, int clkNum const char *s)
Set a specific clock timng in a pattern.

ccsCOVPL_STAT Dwel | Time(int factor, int add);
Set global dwell tinme factor +add.

ccsCOVPL_STAT Ti meFactor (int factor);
Set global dwell time factor.

ccsCOVPL_STAT Ti meAdd(int add);
Set global dwell tinme add.

ccsCOWPL_STAT d eanLoop(int *code, int *codeLength);
Check | oop structures in <code> and renbve zero | oops.

i nt ExecTi ne(doubl e *execTi ne)
Conput e execution tine of whol e sequencer program A negative val ue
indicates an infinite | oop.

ccsCOWPL_STAT ExecTi ne(doubl e *execTime, int *code, int |ength)
Conput e execution tinme in seconds for a piece of sequencer program
code (i.e. subroutine).

ccsCOWPL_STAT Resol veSubRt (ngcdcs_seqp_t *prg);
Resol ve subroutines addresses defined i n sequencer program
mai n code of <prg> This will fill the all subroutine structures
i ncl udi ng <nane> and <tine> (see below for structure details).

ccsCOWPL_STAT CheckPrg(ngcdcs_seqp_t *prg);
Check the sequencer program and cl eanup the | oop-structures
in main code and in all resolved sub-routines.

ccsCOWPL_STAT Set upPrg();
Downl oad current gl obal sequencer program structure.

ccsCOWVPL_STAT Set Prg(ngcdcs_seqp_t prg);
Wite the sequencer program <prg> to the controller RAM and
(if this was successful) copy it to global sequencer program
structure.

ccsCOWPL_STAT Get Prg(ngcdcs_seqp_t *prg);
Read sequencer programfromcontroller RAM The subroutines

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 41

within <prg> will be resolved automatically.

voi d DumpPrg(char *, ngcdcs_seqp_t prg, int n = -1);
Dunmp sequencer program <prg> to string:

n <0 - whole program
n =0 - main program
n >0 - subroutine <n>

voi d DunmpCode(char *reply, ngcdcs_seqp_t prg, int offset, int length);
Dunp pi ece of sequencer program code to string.

ccsCOVPL_STAT M nPul se(double *min, int clkNun
Conput e the m nunum di stance between two rising edges
for the given clock nunber. The <min> value is returned in
nanoseconds. A negative value indicates that the signal-line
is not toggling.

ccsCOWPL_STAT Pul seCnt(int *rising, int *falling, int clkNum;
Conput e nunber of rising/falling edges on the given clock within
sequencer program Infinite | oops are executed once.

ccsCOWVPL_STAT Par anet ers(const char *fil eName, char *list)
Appends to the <list> string all paraneter names (separated by
new-|ine character) which are used by the sequencer programfile
given by <fileNanme>. The function recursively scans all included
files.

ccsCOWPL_STAT Loadd kFi | e(const char *fil eNane);
Load cl ock pattern file.

ccsCOWVPL_STAT Saved kFil e(const char *fil eNane);
Save clock pattern file.

ccsCOWVPL_STAT LoadPrgFil e(const char *fil eNane);
Load sequencer programfile. Two formats (ASCII and BIN) are
supported by default. Other formats can be added by overl oadi ng
the PrgFile() call back.

ccsCOWPL_STAT C earPrgFile();
Cl ear sequencer programfile. This shoul d be done before | oading
a conplete new setup, in order to avoid automatic re-I|oadi ng of
the | ast program upon various paraneter setups.

virtual ccsCOVWPL_STAT Loadd k(const char *fil eNane);
Cal Il back to | oad sequencer clock pattern file in application
specific format.

virtual ccsCOWL_STAT SaveC k(const char *fil eNane);
Cal | back to | oad sequencer clock pattern file in application
specific format.

virtual ccsCOVWPL_STAT PrgFil e(const char *fil eNane);
Cal Il back to | oad sequencer programfile in application
specific format.

virtual int LookupCB(const char *nanme, char *val ue);
Cal | back for parameter |ookup. The function nmust return
non-zero in case the paraneter given by its <name> has
been resol ved and the val ue had been properly set. Oherw se
zero nust be returned.

PUBLI C DATA MEMBERS

doubl e cl ock; - Sequencer clock (default: 10 ns)
i nt status; - Soft status:
ngcdcsSEQ STAT_I DLE - idle

ngcdcsSEQ STAT_RUNNING - running

42

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

ngcdcsSEQ STAT_FAILURE - failure
int runCrl; - External run-control enabled (default is 1).
i nt continuous; - Continuous node flag (default is 0). This would

issue a restart at each exposure.

int triggerMode; - Triggered node flag (default is 0). This would
enable the wait-for-trigger state. If not set,
the wait-for-trigger state is ignored. The val ue
only becones valid at next start. Use the
Trigger Mode() function to enabl e/disable the
trigger node at run-tine.

int tineFactor; - Aobal dwell time factor (default is 1)
int tineAdd; - G obal value to be added to dwell tine (default is 0)
i nt updat eFl ag; - Flag to update the sequencer program

char cl kFil e[256];

Clock pattern file nane

char prgFile[256]; - Sequencer programfile nane
ngcb_l ookup_t paraniookup; - External handler for paraneter | ookup
int acqLi st[ngcdcsACQ MAX PROC]; - List of associated acquisition
processes
ngcdcs_win_t win; - Read-out w ndow structure:
int sx; - Start pixel in x-direction (fast)
int sy; - Start pixel in y-direction (slow)
int nx; - Dinension in x-direction
int ny; - Dinmension in y-direction
ngcdcs_pat _t *pattern; - Clock pattern setup
ngcdcs_seqp_t program - Sequencer program

The ngcdcs_pat _t object contains the foll ow ng nenbers:

int addr; - Address (relative to RAM base)
ngcdcs_pat _st_t state[ngcbhSEQ MAX STATES]; - States

i nt nuntt at es; - Nunber of states in this pattern

int tine; - Cock pattern execution time in ticks
char nane[128]; - Pattern nane

The ngcdcs_pat _st object contains the follow ng nenbers:

int |ow - Pattern | ow

int high; - Pattern high

int tine; - Pattern dwell tine (in ticks)

i nt nod; - Allow global dewll tinme nodification

The ngcdcs_seqgp_t object contains the follow ng nenbers:

i nt code[ngchSEQ RAM SI ZE]; - Sequencer program code

int |ength; - Program code length
ngcdcs_subrt_t subRt[ngcdcsSEQ MAX SUBRT]; - Subroutines

i nt nunSubRt; - Nunber of subroutines

int stored; - Programstored in controller

The ngcdcs_subrt _t object contains the foll ow ng nmenbers:

int addr; - Start address (relative to RAM base)
int index; - Reference index

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

int |ength; - Subroutine code |length
doubl e time; - Execution time in seconds
char name[128]; - Subroutine nanme (optional)

RETURN VALUES

If not specified differently, all functions return SUCCESS
in case of success. O herwise FAILURE is returned and an
error is added to the error-stack.

SEE ALSO
ngcbl FC(4), ngcbMOD(4), ngcbPARAM 4)

43

44 NGC Base Software Design - 2.4

VLT-SPE-ESO-13660-3836

1.18 ngcdcsADC_CLASS

NAMVE

ngcdcsADC_CLASS - NGC ADC cl ass
SYNOPSI S

#i ncl ude <ngcdcsMOD_CLASS. h>

ngcdcsADC_CLASS adc();

PARENT CLASS
ngcdcsADC_CLASS: public eccsERROR _CLASS, public ngcdcsMID

DESCRI PTI ON
NGC ADC cl ass.

PUBLI C METHCDS

ngcdcsADC_CLASS(ngcb_route_t route);
Constructor nethod specifying the |local route to the
nodul e inside the front-end (header).

ngcdcsADC_CLASS(ngchl FC *dev, ngcb_route_t route);
Constructor nethod specifying the interface device and

the local route to the nodul e inside the front-end (header).

ngcdcsADC_CLASS(ngcb_route_t route, int n, int b);
Constructor nethod specifying the local route to the
nodul e inside the front-end (header) and the nunber
of ADC units + bits per pixel on this nodule.

ngcdcsADC_CLASS(ngchl FC *dev, ngcb_route_t route, int n, int b);

Constructor nethod specifying the interface device and
the local route to the nmodul e inside the front-end

and the number of ADC units + bits per pixel on this nodule.

virtual ~ngcdcsADC_CLASS();
Destructor nethod.

voi d Reset();
Align soft-states after reset;

ccsSCOVWPL_STAT Online();
Hook met hod, which is executed when goi ng online.

This will wite the actual configuration to the hardware.

ccsCOVPL_STAT St andby();
Hook net hod, which is executed when goi ng standby.

ccsCOWPL_STAT Sel ftest();
Perform a sel ftest.

void Preset(int size, int n);

Configuration preset with a given packet size and <n> enabl ed
ADC units. The <size> and <n> will be adjustet to the nearest
possi ble value. This will not yet transfer the configuration
to the hardware. The latter is done by the Online() hook.

ccsCOVPL_STAT Di sabl e();
Di sable all ADC units on this nodul e.

ccsCOVPL_STAT Enabl e(int n);
Enable first n ADC units on this nodul e.

ccsCOWPL_STAT Enabl e();
Enable all ADC units on this nodul e.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 45

ccsCOWPL_STAT First(int flag);
Set "first-in-chain"-flag.

ccsCOWVPL_STAT Convert(int cvtl, int cvt2);
Enabl e/ di sabl e conversi on on conversion strobe 1 and/or 2.

ccsCOWPL_STAT Packet Si ze(int size);
Set transfer packet size. A value of zero lets the system
choose a proper size.

ccsCOWPL_STAT PacketCnt (i nt size);
Set packet routing length. This is the nunber of packets to
be received fromthe down-1ink(s) before the own data is
transferred.

ccsCOVPL_STAT OpMbde(i nt newivbde) ;
Set operation node. Valid val ues are:

ngchbADC_MODE_NORMAL (0)
ngcbhADC_MODE_SI M (1)

ccsCOWPL_STAT Si mvbde(i nt newibde)
Set sinulation node. Valid val ues are:

ngcbADC_SI M_NUMBERS (0)
ngcbADC_SI M_CNT (1)

ccsCOWPL_STAT Del ay(int ticks);
Set conversion strobe delay in ticks.

ccsCOWPL_STAT O fset (i nt chan, double offset);
Set ADC offset (in Volts) on the given of fset channel.

ccsCOWPL_STAT Monitor(int num int chan);
Set channel nunber for the nonitor. <nums specifies the nonitor
nunmber .

int PixPerWord();
Returns the nunber of pixels per 32-bit word (1 or 2).

PUBLI C DATA MEMBERS

i nt numAdc; - Nunber of ADC units on this nodule

int enabl e; - Number of enabled ADC units on this nodul e

i nt packetSi ze; - Packet size

i nt packetCnt; - Packet routing length (nunber of packets from
down- 1 i nk) .

int convert1i; - Enabl e conversion on convert pulse 1

int convert2; - Enabl e conversion on convert pulse 2

int firstlnChain; - First in chain

i nt opMbde; - Operation node (O=nornmal, 1=simulation)

i nt simvbde; - Sinulation mbde (O=nunbers, 1=counter)

i nt del ay; - Conversion strobe delay (in ticks)

doubl e of fset[32]; - Ofset per group

int nonitorl; - Mnitor 1

46 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

int nonitor?2; - Monitor 2

RETURN VALUES

If not specified differently, all functions return SUCCESS
in case of success. O herwise FAILURE is returned and an
error is added to the error-stack.

CAUTI ONS

The channel nunber, which is given as argument to the Mnitor()
menber function, starts with zero!

SEE ALSO
ngcbl FC(4), ngcbMOX(4)

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836 47

1.19 ngcdcsACQ_DATA CLASS

NAME

ngcdcsACQ DATA CLASS - NGC acquisition process data interface class
SYNOPSI S

#i ncl ude <ngcdcsMOD_CLASS. h>

ngcdcsACQ DATA CLASS data();

PARENT CLASS
ngcdcsACQ DATA CLASS: public eccsERROR_CLASS, public ngcdcsOBJ

DESCRI PTI ON
NGC acqui sition process data interface class.

PUBLI C METHODS

ngcdcsACQ DATA CLASS();
Const ruct or net hod.

ngcdcsACQ DATA CLASS(ngcdcs_acq_cfg_t cfg);
Constructor nethod with configuration object (see bel ow).

virtual ~ngcdcsACQ DATA CLASS();
Destruct or met hod.

voi d Configure(ngcdcs_acq_cfg_t cfQ)
Configure system The configuration object has the follow ng

menber s:
i nt dataPort; - Data server port
int transferMde; - Data transfer node
char host[64]; - Acqui sition process host

The transfer node nust be one of ngcppTMODE_SClI ENCE or

ngcppTMODE_VI DEO. The default value is ngcppTMODE_SCl ENCE.

In science node the ol dest avail able, but not yet transferred

frame, which matches the frame-type in the request structure is
transferred (FIFO. In video-node for each frane-type matching

the request, the latest not yet transferred frane is selected (LIFO.
Fromthis selection the oldest frame is transferred. In both cases
‘not yet transferred’ neans, that the frame has not yet been
transferred to the requesting client.

The configuration becones active with the next call of the
Open() - nenber function.

ngcdcs_acq_cfg_t *Cfg();
Get pointer to configuration.

ccsCOVPL_STAT Open();
Open data connecti on;

ccsCOWVPL_STAT d ose();
Cl ose data connecti on.

int Fd();
Returns the file descriptor for data connection to acquisition
process.

int BitPix(int dataType);
Convert data type to bitpix-value as requiered by the
FI TS- speci fi cati on.

ccsCOWPL_STAT FrameDef (ngcdcs_framedef _t *franeDef);
Get currently defined frane types.

48

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

i nt Avai |l abl eFranes();
Returns currently avail able frane types.

int FraneType(const char *nane);
Get frame type by frame nane.

voi d FraneNane(char *nanme, int type);
Get frame nane by frame type.

voi d FraneParam(char *paranNane, int type);
Get frame enabl e/ di sabl e paraneter name by type.

voi d FraneParam(char *paranNane, const char *nane);
Get frame enabl e/ di sabl e paranmeter name by frame nane.

int Franeldx(int type);
Returns the index for a given frame type.

voi d Set Request (int type);
Setup data request by specifying a new type.

voi d Set Request(int sx, int sy, int nx, int ny);
Setup data request by specifying a new w ndow.

voi d Set Request(int type, int sx, int sy, int nx, int ny);
Setup data request by specifying a new type and a new w ndow.

ccsCOVPL_STAT Request ();
Send data request as defined by the Set Request() nethods.

ccsCOWPL_STAT Request (int type);
Send data request (new type).

ccsCOWPL_STAT Request(int sx, int sy, int nx, int ny);
Send data request (new wi ndow).

ccsCOWPL_STAT Request (int type, int sx, int sy, int nx, int ny);
Send data request (new type and new w ndow) .

ccsCOVPL_STAT Retransmt();
Retransnit frane. Retransnission can only be done in video-
transfer nmode (ngcppTMODE_VI DEO).

ccsCOWVPL_STAT Retransmt(int sx, int sy, int nx, int ny);
Retransnit franme (new wi ndow). Retransmni ssion can only be done
in video-transfer node (ngcppTMODE_VI DEO).

ccsCOVPL_STAT Cancel ();
Cancel pending data request.

ccsCOVPL_STAT Wait();
Wait for data event.

ccsCOVPL_STAT Ski p();
Skip data frame

ccsCOWPL_STAT Get Frane(ngcpp_frame_t *frane, int chipld=0);
ccsCOWPL_STAT Get Frane(void *buffer, int chipld=0);
Get frame (as is). <chipld> specifies a chip in a npsaic.
If the <chipld> is zero, the data for all chips in a nobsaic is
recei ved.

ccsCOWPL_STAT Get Franme(ngcpp_frane_t *frane,
int sx, int sy, int nx, int ny,
i nt chipl d=0);

ccsCOWPL_STAT Get Frane(void *buffer,
int sx, int sy, int nx, int ny,
i nt chipld=0);

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

Get frame (new wi ndow). <chipld> specifies a chip in a npsaic.
If the <chipld> is zero, the data for all chips in a npbsaic is
recei ved.

ccsCOWVPL_STAT Accept ();
Accept data frane (as is). This does not yet receive any data.

ccsCOWVPL_STAT Accept(int sx, int sy, int nx, int ny);
Accept data frane (new wi ndow). This does not yet receive any data.

ccsCOWPL_STAT Receive(void *buffer, int offset, int size);
Recei ve <size> bytes of franme data and put theminto <buffer>
at <offset> The offset is given in bytes.

ccsCOWPL_STAT Receive(ngcpp_franme_t *frame, int offset, int size);
Recei ve <size> bytes of frame data and put theminto the buffer
of the <frame> structure at <offset> The offset is given in bytes.

voi d Scal e(ngcpp_frame_t *frane);
Apply scale factor as defined in the frane header. The data type
in the header will be updated accordingly.

voi d Scal e(void *buffer, int nx, int ny, int *dataTpye, int *scal eFactor);
Apply scale factor. The <dataType> may change.

voi d Scal e(void *buffer, ngcdcs_finfo_t *f);
Apply scale factor as defined in the frane info structure <f>.
The ngcdcs_finfo_t structure contains the foll ow ng nmenbers:

int type; - Unique frane type

char nane[64]; - Uni que frane name

int fcnt; - Frame counter

int scaleFactor; - Scaling factor to be applied in order

to nornalize
doubl e expFactor; - Factor for EXPTIME

int bitPix; - Bits per pixel (as defined in the
FI TS- st andar d)

int nx; - Dinension in x-direction

int ny; - Dimension in y-direction

doubl e crpi x1; - Reference pixel in x-direction

doubl e crpi x2; - Reference pixel in y-direction

i nt detldx; - Detector index (for nopsaics)

int expCnt; - Exposure counter

char utc[64]; - Tinme when frame was ready in the
pre- processor

ngcdcsCUBE *cube; - Data cube object to be used for storing
to a cube

The value of bitPix may change, when aplying the scal eFactor.

voi d Scal e(void *buffer);
Apply scale factor as defined in the | ast received header.
The data type in the |ast received header will be updated
accordingly.

I nformati on on current frane:

int Valid();
Returns 1 in case a valid frame was received. O herw se
zero is returned.

int FrameType();
Returns the type of the current frane.

int Frameldx();
Returns the index for current frame type.

voi d FraneNane(char *nane);
Get current frane nane.

50 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

int DataType();
Return data type of current frane.

int Scal eFactor();
Return scaling factor for current frame.

doubl e ExpFactor();
Return EXPTIME factor for current frane.

int FraneCounter();
Return frane counter for current frane.

int Setupld();
Return setup-id of the current frame.

int StartX();
Return start pixel in x-direction for current frane.

int StartY();
Return start pixel in y-direction for current frane.

int NX();
Return x-di nension of current frane.

int NY();
Return y-di nension of current frame.

int FraneSize();
Return frane size in bytes of current frane.

i nt DatunSize();
Return pixel datumsize in bytes of current frame.

int BitPix();
Ret urn bitpix-value of data type of current frane (as requiered
by the FITS-specification).

PUBLI C DATA MEMBERS
i nt nunDet ; - Nunber of detectors in npsaic

int ioError; - Flag indication that an i/o-error has occured

RETURN VALUES

If not specified differently, all functions return SUCCESS
in case of success. Otherwise FAILURE is returned and an
error is added to the error-stack.

SEE ALSO
ngcdcsOBI(4), ngcdcsACQ 4)

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.20 ngcdcsACQ_CLASS

NAME

ngcdcsACQ CLASS - NGC acquisition process interface class
SYNOPSI S

#i ncl ude <ngcdcsMOD_CLASS. h>

ngcdcsACQ CLASS acq();

PARENT CLASS

ngcdcsACQ CLASS: public eccsERROR _CLASS, public ngcdcsOBJ,
publ i ¢ ngcbhTHREAD

DESCRI PTI ON
NGC acqui sition process interface class.

PUBLI C METHODS

ngcdcsACQ CLASS();
Constructor method.

ngcdcsACQ _CLASS(ngcbPARAM LI ST *p);
Constructor nethod with paraneter |ist.

ngcdcsACQ CLASS(ngcdcs_acq_cfg_t cfg, ngcbPARAM LI ST *p);
Constructor nethod with configuration object (see below) and
parameter |ist.

virtual ~ngcdcsACQ CLASS();
Destruct or mnet hod.

voi d Confi gure(ngcdcs_acq_cfg_t newConf)
Configure system The configuration object has the follow ng

nmenbers:
int cndPort; - Conmand server port
i nt dataPort; - Data server port
int errPort; - Error-stack server port
int nunDataClient; - Nunber of data clients
i nt transferMde; - Data transfer node
char host[64]; - Acqui sition process host
char dev[128]; - Acquisition process DVA device nane

The port nunbers nmay be set to zero to let the system choose an
appropori ate one. The actual nunber are stored in the public
dat a nenbers cndPort and dataPort. The configuration becones
active with the next call of the Exec() - nenber function.

voi d Get Cfg(ngcdcs_acq_cfg_t *current Conf);
Returns the current configuration, as given via the Configure()
net hod.

ccsCOWVPL_STAT Al loc(int size);
Al | ocate new frane buffer of the given size. A zero size
will free the buffer. A negative value will allocate a default
si ze.

ccsCOWPL_STAT Al l oc();
Sane as Alloc(int size) but uses the preset value of the public
data nenber <allocSize> (see bel ow).

voi d Dictionary(ngcdcsDl C *dictionary);
Attach to a dictionary.

voi d Exposure(ngcdcsEXP *exposure);
Attach to an exposure setup.

51

52 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

ngcdcsEXP *Exposure();
Returns the current exposure setup.

void ErrState(int id, const char *erns);
Set this nodule instance to error state. An external error state
handler will be called with an internal <id> <erns> and a pointer
to this object as argmuents.

void SinmError(int error);
Trigger an error sinulation. Possible values for <error> are:

ngcdcsACQ TESTERR DATA 1O - Data i/o failed
ngcdcsACQ TESTERR STORE - Failed to store data to disk

void Sim(int flag);
Switch to sinulation mode if <flag> is not equal to zero.

char *Host ();
Ret urns acquisition process host nane.

char *Dev();
Ret urns acquisition process device nane.

int Pid();
Returns process id of current acquisition process or zero, if
no process is |aunched.

ccsCOVPL_STAT Reset();
Internal cleanup. If no acquisition process is |aunched,
the function will have no further effect.

ccsCOWPL_STAT Exec();

ccsCOWPL_STAT Exec(const char *newProcess);
Launch new acqui sition process specified by process nane. The
previously running process will automatically be aborted before.
If no nane is given, the previous process wll be (re-)Iaunched.
If name is NULL or an enpty string, the previously |aunched process is
aborted and the saved process name is deleted, so no re-launch will
happen when calling Exec() until a new name is given. In
burst-node (i.e. burst > 0) the process given in the gl obal
burstProcess name will be used instead of <newProcess>.

ccsCOVPL_STAT Abort();
Abort current acquisition process.

virtual ccsCOVPL_STAT Dat aConnect () ;
Establish a (local) connection to the data server. A |ocal
connecti on woul d require an asynchronous data transfer
i mpl ementation. If this is not desired or possible,
t he DataConnect() nethod has to be overloaded with a "no operation”
function. Then the host nane returned by the Host() menber function
and the data port nunber stored in the public data nenber dataPort
can be used to inplenent an exernal data transfer task.

int FACnd();
Returns file descriptor for connection to conmand server thread.

int FdErr();
Returns error-stack file descriptor.

ccsCOWPL_STAT Handl eFdCndEvt () ;
Handl e i nput on conmand server file-descriptor. This is an
i/o error case.

ccsCOVPL_STAT Handl eFdErr Evt () ;
Handl e input on run-tine error-stack file descriptor.

const char *StatusString();
Returns a string matching the acquisition nodul e status

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

(idle, running, failure);

ccsCOWPL_STAT Burst(int num;
Set nunber of bursts. If burst is greater than zero, the
bur st-process definded in the public data nenber <burstProcess>
i s launched instead of the defined acquisition process. |If
burst is a negative nunber, its absolute value 1s used as nunber
for the internal burst buffers.

ccsCOWVPL_STAT Bur st Ski p(int num;
Set nunber of frames to skip before starting burst.

ccsCOWVPL_STAT Start();
Send start conmand to acquisition process.

ccsCOWPL_STAT Restart();
If acquisition process was not in ready state, a stop conmand
is issued before starting.

ccsCOWVPL_STAT Stop();
Send stop comand to acquisition process.

ccsCOVPL_STAT NewSet up();
Mark next setup. Should be called before each new
exposure.

ccsCOWVPL_STAT ResetCnt();
Set flag to reset acquisition process counters

ccsCOVPL_STAT End();
Set flag to end processing as soon as possible by conputing
an intermediate result.

ccsCOWPL_STAT Cnd(const char *cnd, char *reply);
Send user-defined ASCII command to acquisition process. The
reply will be stored in <reply>.

ccsCOWPL_STAT Upl oad(int id, const char *path);
Upload a FITS-file to the acquisition process. The data
has to be nmarked with an integer <id> to be resolved by the
acqui sition process.

ccsCOWPL_STAT Upl oad(int id, char *buffer, int size);
Upl oad a raw data buffer to the acquisition process. The data
has to be nmarked with an integer <id> to be resolved by the
acqui sition process.

ccsCOWPL_STAT Clear(int id);
Cl ear upl oaded data region. This will mark the data region
given by its <id> as invalid.

ccsCOWVPL_STAT SyncPar an(i nt tineout=20);
Synchroni ze paraneter setup with the given tineout.

ccsCOWPL_STAT Set Par am(const char *paramNane,
const char *paranval ue,
int sync=1);
Set an acquisition process paranmeter. |f <sync> is set to 1, the
SyncParam() nethod is called after uploading the paraneter.

ccsCOWPL_STAT Get Param(const char *paranmNane, char *paranVal ue);
Retrieve a paranmeter from acquisition process.

ccsCOVPL_STAT Appl yPar anili st (ngcbPARAM LI ST *list, int sync=1l);
Upl oad all paraneters which are defined in both the given
<list> and in the acquisition process. If <sync>is set to 1, the
SyncParam() nethod is called after uplaoding the paraneters.

53

o4

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

ccsCOVPL_STAT Appl yPar anili st (i nt sync);
Apply the global paraneter |ist.

ccsCOWPL_STAT HWW n(int sx, int sy, int nx, int ny)
Set HW read-out w ndow.

ccsCOVPL_STAT SinTine(int ns);
Set sinulation interval for acquisition process (in mlliseconds).

float Perf();
Returns current CPU | oad in percent.

voi d Statistics(ngcdcs_acqperf _t statistics);
Retrieve data transfer statistics of |ast exposure. The
ngcdcs_acqperf _t structure contains the follow ng nenbers:

doubl e net; - Network overhead in seconds

doubl e disk; - Disk overhead in seconds

double file; - File creation overhead in seconds
double fits; - FITS-header overhead in seconds
doubl e proc; - Post-processing overhead in seconds
doubl e size; - Reference size for rate in bytes

int TransferEnabl e();
Enabl e sustained transfer. This will also start the data
transfer if not yet done.

voi d TransferDi sabl e();
Di sabl e sustai ned transfer.

ccsCOWPL_STAT StartTransferring();
Start data transfer.

void StopTransferring();
Stop data transfer.

ccsCOVPL_STAT Start Exposure();
Start exposure. This will also start the data transfer if not
yet done.

voi d St opExposure();
St op exposure.

int Transferring();
Check protected transferring flag. Returns 1 in case the
transfer is still in progress.

int LastTransfer();
Returns 1 in case the |last data transfer of an exposure has been
started. The flag is reset to zero, when a new exposure is
started.

ccsCOWPL_STAT FranmeDef (ngcdcs_franmedef _t *franeDef);
Get currently defined frane types.

ngcdcs_franedef _t *ngcdcsACQ : Franme(const char *nane);
Get status info for a frane specified via its <nane>.

ccsCOWPL_STAT FrameGen(const char *frameNane, int gen);
Switch generation for frame with the given nane on/off (gen = 1/0).

voi d ExpStart Tine(struct tineval tineVval);
Set exposure start tinme.

const char *ExpStartTi me();
Get exposure start tine.

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

doubl e ExpStart Ti meMID();

int

i nt

Get exposure start time (MID).

ExpSeqNo() ;
Get current exposure sequence nunber.

ExpActive();
Returns 1 in case an exposure is currently active on this
acqui sition nodul e.

virtual ccsCOWL_STAT Store(char *buffer, ngcdcs_finfo_t finfo,

char *where);
Over | oadabl e function to store a frame to disk. The data buffer
is passed in <buffer>. The string <where> returns the full path,
where the data has actually been stored. This depends on the nam ng
schene, the file format etc. given in the exposure configuration
obj ect, which can be retrieved via the Exposure() nethod.

The ngcdcs_finfo_t structure contains the foll ow ng nenbers:

int type; - Unique frane type

char nane[64]; - Uni que frane name

int fcnt; - Frame counter

int scaleFactor; - Scaling factor to be applied in order
to normalize

doubl e expFactor; - Factor for EXPTIME

int bitPix; - Bits per pixel (as defined in the
FI TS- st andar d)

int sx; - Lower left corner (x-direction)

int sy; - Lower left corner (y-direction)

int nx; - Dinension in x-direction

int ny; - Dinmension in y-direction

doubl e crpi x1; - Reference pixel in x-direction

doubl e crpi x2; - Reference pixel in y-direction

i nt detldx; - Detector index (for nosaics)

int expCnt; - Exposure counter

char utc[64]; - Time when frame was ready in the

pre- processor
ngcdcsCUBE *cube; - Data cube object to be used for storing
to a cube

The ngcdcsCUBE obj ect contains the foll owi ng nmenbers:

FI LE *fd; - File descriptor
i nt naxisi; - Dimension in x-direction for all images
in the cube
i nt naxis2; - Dimension in y-driection for all images
in the cube
i nt naxis3; - Nurber of inages
int bitPkix; - Bits per pixel for all images in the cube
(as defined in the FITS-standard)
int sx; - Lower left corner (x-direction)
int sy; - Lower left corner (y-direction)
char fileNanme[256]; - Actual filename (full path)
char frameNane[64]; - Frane type name for all inmages in the cube
int Size(); - Returns actual size of the cube data in bytes
int Open(const char *path, const char *nane); - create cube file
void C ose(); - Close the cube file (empty cubes will be
r enoved)

The naxisl, 2,3, the bitPix and the frameNanme of the individual
frames to be added have to be checked for consistency with the
overall value in the ngcdcsCUBE object before storing!

PUBLI C DATA MEMBERS

int

i oError; - Flag indication that an i/o-error has
occured

ngcdcs_es_t errStateHandl er; - External error state handl er of type:

55

56 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

voi d myHandl er (char *erms, ngcdcsACQ *nodul e)

ngcdcs_acq_dcf _t detCfg - Detector configuration:
i nt nunDet ; - Nunber of detectors in npbsaic
i nt addl dx; - Flag to add detector index to fil enane
i nt detO; - First detector in this instance
int sx; - Lower left x (for HWw ndow)
int sy; - Lower left y (for HWw ndow)
int nx; - Detector x-dinmension
int ny; - Detector y-dinmension
int splitX; - Split to FITS extensions
int splity; - Split to FITS extensions
int allocSize; - Frane buffer size preset (in bytes)
ngcdcsACQ DATA dat a; - Data interface
i nt updat eFr anes; - Flag indicating that frane configuration

has changed

i nt burstNum - Nurmber of bursts (zero = burst disabled).
Default value is 0.

i nt burst Skip; - Franes to skip before starting burst.
Default value is 0.

i nt continuous; - Continuous node flag. If the flag is set,
the counter reset function is disabled.
Default value is 0.

int transfer; - Transfer flag (sustained data connecti on)

char burtsProcess|[256]; - Burst process to start in burst node.
Default is <ngcppBurst>.

i nt status; - Soft status:
ngcdcsACQ STAT_I DLE - idle
ngcdcsACQ STAT_READY - acq.process has been | aunched and is ready

to recei ve conmands
ngcdcsACQ _STAT_RUNNI NG - runni ng
ngcdcsACQ STAT_FAILURE - failure (run-tinme error)

int cndPort; - Actual command server port

i nt dataPort; - Actual data server port
RETURN VALUES

If not specified differently, all functions return SUCCESS

in case of success. Otherwise FAILURE is returned and an
error is added to the error-stack.

SEE ALSO
ngcdcsACQ DATA(4), ngcdcsOBI(4)

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

1.21 ngcdcsCTRL_CLASS

NAME

ngcdcsCTRL_CLASS - NGC control |l er class
SYNOPSI S

#i ncl ude <ngcdcsMOD_CLASS. h>

ngcdcsCTRL_CLASS control ler();

PARENT CLASS
ngcdcsCTRL_CLASS: public eccsERROR_CLASS, public ngchOBJ

DESCRI PTI ON

NGC controller class. This is an interface class handling
a nunber of interface devices and their associ ated NGC-networks
contai ning the sequencer-, CLDC- and ADC- nodul es.

PUBLI C METHODS

ngcdcsCTRL_CLASS() ;
Const ruct or net hod.

virtual ~ngcdcsCTRL_CLASS();
Destruct or net hod.

ccsCOWPL_STAT Sin(int flag);
Set all defined devices to sinulation node.

ccsCOWPL_STAT AttachMbd(ngcbMD *);
Attach an additional nodule to global controller handling.
The Reset (), Standby(), Online() hooks will be called and the
links leading to the nodule will be configured automatically.

The nodule will be deleted at shutdown and has to be attached
again if applicable. This requires that the nodul e has been
created with the <new> operator. The method will also

associ ate externally defined handl ers for verbose/l og out put
with this nodul e.

ccsCOWVPL_STAT Initialize();
Internal intialization after configuring. This will associate
externally defined handlers for verbose/log output and error
state and associ ate an appropriate network structure for
the defined devices and nodul es.

ccsCOVPL_STAT Shut down() ;
This first aborts (standby state) and then deletes all
controller nodules. The Initialize() nethod needs to be called
to bring the controller up again.

ccsCOVPL_STAT Abort ();
Abort all defined nodules. This will stop the sequencer(s)
and di sabl e the CLDC-nodul e(s).

ccsCOWPL_STAT Reset ();
Overall reset. This will reset all controller device and align
the soft states for the sequencer-, CLDC and ADC- nodul es.

ccsCOWPL_STAT Refresh(int id=0);
Refresh internal telenetry of the CLDC nodule given by its <id>.
If the <id> is zero, all nodules are refreshed. Mdul e nunbers
start with 1.

ccsCOVPL_STAT St andby();
Bring interface devices to standby state. Driver interface processes
are alive, but the physical devices are disconnected (i.e. closed).

ccsCOVPL_STAT Online();
Bring interface devices to on-line state. This will also align

57

58 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

the soft states for the sequencer-, CLDC and ADC-nodul es and
call the appropriate on-1ine hooks. The driver interface
processes are alive and all physical devices are connected
(i.e. opened). If a device was disconnected before (i.e. was
in standby- or off-state), a hardware reset is perforned on
this device and the NGC- network is (re-)enabl ed afterwards.
If the <check> flag is set, then systemintegrity checks are
perforned before going on-1ine.

ccsCOWPL_STAT Of();
Bring interface devices to off-state. Al physical devices are
di sconnected and driver interface processes are not alive.

voi d Shut down();
Shutdown all controller nodules. This will delete all created
obj ects for the sequencer-, CLDC- and ADC- nodul es.

ngcbNET *Networ k(i nt instance);
Return pointer to the NGC network structure associated with
a device specified by its instance nunber. If no network
is associated to the given interface instance, a NULL pointer
is returned.

ccsCOWPL_STAT Enabl e();
Enabl e all networks associated with the defined interface devices.

ccsCOWPL_STAT ReadAddr (ngchl FC *dev, ngcb_route_t route, int address,
int *buffer, int size);
Reads size words fromthe given device address into buffer.
The ngcb_route_t structure contains the follow ng el enents:

i nt nunmHdr; - Nunber of headers to target including
the term nating <0x2>
i nt hdr [ngcbhMAX_MOD] ; - Array of headers including the

term nating <0x2>

ccsCOVPL_STAT Wit eAddr(ngcbl FC *dev, ngcb_route_t route, int address,
int *buffer, int size);
Wites size words frombuffer to the given device address.
The ngcb_route_t structure contains the follow ng el ements:

int nunHdr; - Nunber of headers to target including
the term nating <0x2>
i nt hdr[ngcbhMAX_MOD] ; - Array of headers including the

term nating <0x2>

ccsCOVPL_STAT Wi teBuffer(ngchl FC *dev, int *buffer, int size);
Wites a fornmatted buffer to the given interface device.
The format of the buffer is:
<hdr1l hdr2 ... hdrN address datal data2 ...>

PUBLI C DATA MEMBERS
ngcb_es_t errStateHandl er; - External error-state handl er of type:

voi d nmyHandl er (char *erms, ngcbl FC *nodul e)

int ioError; - Indicates that the preceedi ng transaction
caused an i/o error on one of the interface
devi ces(generally the connecti on shoul d be
reset in that case).

ngcbl FC *dev|[ngcdcsCTRL_MAX _DEV] ; - Controller interface devices
i nt nunDev; - Nunber of interface devices

ngcdcsCLDC _CLASS *cl dc[ngcdcsCTRL_MAX_CLDC]; - CLDC nodul es

i nt nunCl dcMod; - Nunber of CLDC nodul es
int cldcRef; - CLDC reference nodul e
ngcdcsSEQ CLASS *seq[ngcdcsCTRL_MAX_SEQ ; - Sequencer nodul es

i nt nunSeqMod; - Number of sequencer nodul es

NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

i nt seqRef; - Sequencer reference nodul e
ngcdcsADC_CLASS *adc[ngcdcsCTRL_MAX_ADCMOD] ; - ADC nodul es

i nt nunmAdcMod; - Nunber of ADC nodul es

i nt adcRef; - ADC reference nodul e

RETURN VALUES

If not specified differently, all functions return SUCCESS
in case of success. O herwise FAILURE is returned and an
error is added to the error-stack.

SEE ALSO

ngcbOBJ(4), ngcbl FC(4), ngcbNET(4), ngcbMOD(4), ngcdcsCLDC _CLASS(4),
ngcdcsSEQ CLASS(4), ngcdcsADC _CLASS(4)

59

60 NGC Base Software Design - 2.4 VLT-SPE-ESO-13660-3836

	1 INTRODUCTION
	1.1 Purpose
	1.2 Scope
	1.3 Applicable and Reference Documents
	1.4 Glossary
	1.5 Abbreviations and Acronyms

	2 HARDWARE OVERVIEW
	2.1 Detector Front End
	2.2 Computing Architecture
	2.3 Communication Protocol
	2.4 Voltage Programming
	2.5 Sequencer Programming
	2.5.1 Clock Pattern RAM
	2.5.2 Sequencer Program RAM

	2.6 Sequencer Control
	2.7 Synchronization

	3 SOFTWARE ARCHITECTURE
	3.1 Hierarchy
	3.2 Software Modules
	3.3 Test Software
	3.4 Class Structure
	3.5 Verbose Mode and Logging
	3.6 Error Handling

	4 DEVICE DRIVER
	4.1 NGC Communication Channel
	4.2 DMA Data Acquisition
	4.3 Commands
	4.4 Driver Interface Libraries

	5 NGC INTERFACE CLASS
	5.1 Interface Base Class
	5.2 Interface Instantiation
	5.3 NGC Simulator Class

	6 NGC SOFTWARE CLASSES
	6.1 Module Base Class
	6.2 Parameter Model
	6.3 Sequencer Module Class
	6.3.1 Clock Pattern Setup
	6.3.2 Sequencer Program
	6.3.3 Sequencer Control
	6.3.4 Synchronization

	6.4 CLDC Module Class
	6.5 ADC Module Class
	6.6 Selftest
	6.7 Configuration Modules

	7 DATA PRE-PROCESSING
	7.1 Concept
	7.1.1 Parallel Computing Architecture
	7.1.2 Priority Controlled Scheduling
	7.1.3 The Threads-Model

	7.2 The Acquisition Process
	7.2.1 Initialization
	7.2.2 Exporting Parameters
	7.2.3 Frame Types
	7.2.4 Acquisition Loop
	7.2.5 Data Transfer
	7.2.6 Importing Data-Sets
	7.2.7 Pixel Sorting
	7.2.8 Run-Time Flags
	7.2.9 Simulation Mode

	7.3 Acquisition Process Interface
	7.3.1 Data Interface
	7.3.2 Data Export
	7.3.3 The Acquisition Module Class

	8 MAINTENANCE SERVER
	1 TRACEABILITY MATRIX
	1.1 NGC Requirements from [AD6]
	1.2 NGC Software Requirements from [AD7]
	1.3 Adaptive Optics Requirements for NGC from [AD20]

	1 APPENDIX
	1.1 ngcb2Drv - Command Definition Table
	1.2 ngcbDrvCom
	1.3 ngcbDrvDma
	1.4 ngcbPrio
	1.5 ngcbThread
	1.6 ngcbSem
	1.7 ncgbTHREAD Class
	1.8 ngcbSEM Class
	1.9 ngcbPARAM Class
	1.10 ngcbIFC Class
	1.11 ngcbIFC_MSG Class
	1.12 ngcbSIM Class
	1.13 ngcbNET Class
	1.14 ngcbOBJ Class
	1.15 ngcbMOD_CLASS
	1.16 ngcdcsCLDC_CLASS
	1.17 ngcdcsSEQ_CLASS
	1.18 ngcdcsADC_CLASS
	1.19 ngcdcsACQ_DATA_CLASS
	1.20 ngcdcsACQ_CLASS
	1.21 ngcdcsCTRL_CLASS

