NGC preamp for CCDs

- High-impedance JFET input
- Low-noise performance: detector limited
- Single-end or differential input (MUSE)
- Differential output
- 16 software selectable gains per channel
- 8 software selectable bandwidths per channel
- Software input short for calibration
- 4 channels, expandable design
- Compact size: 10 x 12 x 4 cm

Via I2C bus with only two lines

NGC for Adaptive Optics 16 July 2008 NEG **Javier Reyes**

NGC AO Scope of Application

Scientific NGC

Designed to control as many different detectors as possible: e2v, MIT, H1RG, H2RG, HiVisi, Calico...

- NGC for AO
 Focus on only one type of detector: LLL (Low Light Level) CCDs,
 i.e. e2v CCD220/CCD219
- Under the same name, NGC, two different front-end electronics focused on two different applications but with some commonalities at user level.

CCD220

The design challenges

- Very fast read-out speed: up to 1500 fps
- Very low read-out noise.
 - Effective read noise <1e- (goal <0.2e-)
- Very stable high-voltage clocks
- Low power consumption
- Reduce volume: 19 x 23.5 x 7.5 cm

The system architecture

The connection topology

NGC AO multi-head scenario

- At user level, homogeneous interface to scientific and AO NGC
- NGC WFS head control by NGC LLCU
 - Fiber link at 1310nm
 - 2.5 Gb/s line rate
 - Xilinx Aurora protocol
- Image frames delivered to SPARTA
 - Fiber link at 850nm
 - 2.5 Gb/s line rate
 - 1.4 Gb/s pixel rate
- sFPDP protocol

The NGC AO WFS head

Mechanical design by Ralf Conzelmann

NGC

The interior of the WFS head

The history of the development

- Development of front-end electronics to validate CCD220
- Development of high-voltage phase clock electronics
- I/F via CameraLink

Opticon **OCAM** camera

First light with prototype camera

e Feautrier

The current prototype hardware

ESO NGC control and comm. board

Technology transfer from Opticon OCAM is key

OCAM development (Marseille/OHP)

Video acq. board

Clock board

- 8 channels read-out ports
- 4 optical transceivers
- Digital sine wave generation
- Adjustable clock delay
- Over-illumination protection

16 July 2008

Javier Reye

The AO WFS head in GRAAL and GALACSI

GRAAL (MUSE)

- The NGC WFS is one common LRU
- About 20 systems to be produced (15 + spares)
- First WFS in last quarter of 2010

GALACSI (HAWK-I)

External I/F Sparta & VLTI

- Scientific NGC interface to VLTI
 - Xilinx Aurora data link level protocol
 - 1310nm mono mode fiber
 - 2.5Gb/s line rate speed
 - 8b/10 encoding
 - PMC based
- AO NGC
 - Same link as above to LLCU
 - SPARTA fiber interface
 - Serial FPDP protocol
 - Low latency: 4..6us
 - 850nm multimode fiber
 - 3.125 Gb/s line rate speed
 - 8b/10b encoding

To SPARTA

To NGC

Spare link

Thanks

- ICD NGC AO: VLT-TRE-ICD-14850-4286
- NGC web page: http://www.eso.org/projects/ngc/
- SPARTA-NGC IF: VLT-SPE-ESO-16100-3729

