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ABSTRACT

Design studies are being conducted with the aim of con-
structing a very large telescope (¢ 16 m) to observe
the night-time sky. A numerical model is developed to
calculate the temperature structure function on top of
the mountain and the results are compared to measure-
ments. The model consists of an equation for the wind-
components, where the turbulence model is the well-
known € — E model, an equation for the temperature
variance and its dissipation. From the values for € and
€g we derive the temperature structure function

C?=16-¢-¢'3, (1)

(Wyngaard et al, 1971). The numerical results were com-
pared to C? derived from the fine-scale temperature fluc-
tuation measurements. The results show the impressive
achievement of this model despite its severe approxima-
tions.

INTRODUCTION

The European Southern Observatory (ESO) wants to
construct a new Very Large Telescope (VLT) in Chile.
They are looking for a mountain with optimal conditions
for observation purposes. This means that the wind and
turbulence fields have to meet certain criteria. For the
contract the wind field was modeled over some chosen
sites with WASP (Troen et al, 1989). Also some possi-
ble alterations in the site were considered like cutting
the top of the mountain. The other part of the contract
here described comprised modeling the ‘seeing’, which
is a function of the temperature structure function C%.
The question concerned the possible effects of different
mountains on the seeing.

DESCRIPTION OF THE MODEL

The situation at the telescope site to be considered is
nighttime flow over a steep hill, without separation. We
confine ourselves to situations with higher winds so that
the stability is weakly stable. In such situations the ef-
fect of the orography on the wind is much larger than
the stability effects, and the buoyancy terms in the ‘flow’
equations (U, E, €) can be neglected. This means a de-
coupling from the ‘temperature’ equations (T, 0%, ¢9).
As stationarity is required we do not solve the temper-
ature equation, which is basically instationary in stable
situations, but assume that the temperature profile is
lifted over the hill.

In our two equation (E-€) turbulence model the fluxes
are approximated by a gradient approach with en eddy
diffusivity K, = c,,éj—:
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where Kg = K, K. = K /o, and K, = oK.
The constants o, and o~} are called Prandtl numbers.

Substituting these flux modeling in the ‘flow’ equations
for stationary flow without buoyancy effects we have for

momentum:
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temperature variance:
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The modeling of the dissipation equation can be found
in Hanjalic and Launder, 1972:
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The modeling of the thermal dissipation equation can
be found in Newman et al, 1981:
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CONSTANTS IN THE EQUATIONS

The constants in the ‘flow’ part of the model for the
atmosphere (Duynkerke,1982) can be determined to be
¢y =A"?=(548)"2 = 0.033, c., =1.83, c,; = 1.46 and
o, =238.

The neutral and stable surface layer profiles found on
flat terrain (Businger,1971) satisfy the 82 equation. For
the €y equation the situation becomes too involved if
stability is taken into account and in this model the

coefficients are tuned to the neutral situation. It follows
that
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We assumed that g = o, = 2.38. There are various so-
lutions to this equation. We tested {a,, a3, as}={1,1,1},
{2.36,2.02,1.5} and {5,3.38,3.38} for the atmosphere,
where the second combination keeps a; as given by New-
man and the other two combinations are chosen such
that the a, are wide apart. We found that the results
for the temperature structure function C2, (our ultimate
goal) are the same on flat terrain no matter what the
constants are.

The weakly stable profiles turned out to be close to a so-
lution of the 4 equation with these sets of coeflicients, in
the sense that only slight changes in C} occurred down-
stream.

TEMPERATURE STRUCTURE FUNCTION

The temperature structure function is defined as

— (@(1‘:) _ GZ(F"' r—;))Z (9)

and can be related to the 3D temperature spectra Sr
normalized as

Cr

0% = /00o Sy(k)d(k).

Scaling the temperature spectrum with the parameters
of the inertial subrange gives (Tennekes and Lumley,
1984 p. 283 with Sy = 2Ey)

Sp(k) = Bege 3k 5.

Here €4 is defined (as before) to be the rate of dissipation
of half the temperature variance.

From the definition of S and C% it follows
ChL=yepe5, (10)

where Tennekes and Lumley’s variables (1984) give vy =
2.4, Dutton and Panofsky (1983, p182) 7 = 2.8 and
Wyngaard et al.(1971) v = 3.2. All authors agree that
the constants are very difficult to measure and a factor
2 in uncertainty is not uncommon.

Wyngaard 1973, page 128 finds from measurements for
the neutral and stable case

(r2)}

Ct o2

= 2.66(1 + 2.4(%)§)

which for neutral stability with £ = .4 reads
C%i%li = 2.66 and which has as very stable limit

cazt = 117663
Using the surface layer profiles
3
u*
e = L4,
1,02
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where the stability parameter { and Monin-Obukhov
length L are given by

z
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in the scaling equation for C}
o?

Ch=rG =gt (13)
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For stable conditions we have the stability functions are
¢mn = 1+ 4.7 and ¢, = .75 + 4.7€. This gives the
measured neutral limit mentioned above if ¥ = 3.6 and
the very stable limit if y = 2.3.

In our model we calculate with neutral ¢,, and stable

¢In thus

v =266 [1 + 2.453] [75 +4.7¢] (14)
E.g. for £ = 1 we have v = 1.6. If necessary, a different
value of 4 can directly be applied to the results by a
simple scaling if the C% axis and all conclusions are still
true in a relative sense.
INNER LAYER THEORY
The relation between the wind profile at the top and the
inlet profile in 2D cases can be described by inner layer

theory (Jackson and Hunt, 1975).

For a hill with height h, width L and roughness zo

£ln(—e—) = 2x? and (15)
L z,
ASpa: ~ 2h/L, (16)

£ is the inner layer height where the speedup S is max-
imum.

With an inlet Uy the differential speedup is defined as

Ulz,2) = Vo) _ Bue g

AS(2) = =76 “



Our model will show that the changes in €y are much
smaller than the ones in €. If € at the top is taken equal
to the inlet (frozen thermal turbulence) and inserting
surface layer scaling for € we get

Ch=16coe™8 =166 —. (18)

Applying inner layer theory we get with z, the x-coordi-
nate of the inlet and z, the x-coordinate of the top

1
C%(z,,z = 1) = i—m C%(.’Ea,l = l) (19d.)
with ‘
2
Ci(zo,z=1) = "’e; (0.75 + i4.7) . (19b)
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These results are only valid in case L, = oco. The in-
fluence of finite L, is not taken into account. For finite
L, the flow can go around the hill and the turbulence
increases less than in the 2D case. This means that the
temperature fluctuations do not get mixed so efliciently
and it is expected that the seeing is higher than pedicted
by 2D inner-layer theory.

THE PU MODEL

The pressure that drives the flow over a hill of small
slope can be approximated by the potential pressure
(Prandtl’s boundary layer). The correct way of proceed-
ing would be to write the flow equations in a boundary
following coordinate system. The assumption that the
pressure is potential is only valid for small slopes and
we will make a next assumption, also based on this fact.
We stretch the surface of the hill into a straight line and
assume that we can keep the Cartesian flow equations in
this coordinate system while keeping the pressure as de-
scribed by the potential pressure. We therefore assume
that no transformation of the flow equations is neces-
sary or in other words that the extra terms due to the
curvature of the coordinate system are small.

From the equation of motion for potential flow we can
easily derive an expression for the horizontal Fourier
transform of the pressure P(k, z).

(o k),
R hexp(-|k|z) . (20)

P(k,z) =

The procedure is as follows. We specify the height of
the terrain h(z,y) and Fourier transform this into A(k).
Substitution and a back Fourier transformation give
P(z,y, z). The value of the background wind ue(z) will
be taken at a height z = c | k |, as used in Troen and
de Baas (1987). The constant c gives a tuning freedom.
With this the pressure is determined and kept fixed in
the further proceedings.

RESULTS

THE PU-MODEL APPLIED TO 2D FLOW OVER HILLS

First the constant in the potential pressure formulation
was tuned against the Askervein measurements. The
vertical wind profile at the hill top and the wind at 10
m height across the hill were checked against the mea-
surements. A good accordance was found for ¢ = 1.

Then the model could be tested against the 2D inner
layer theory. These equations were confirmed and it was
indeed found that the inner layer height £ is independent
of the height of the hill and the maximum speedup is
independent of the roughness.

The PU-model was checked against the second-order
model of Zeman and Jensen (1987) which also accounts
for curvature effects. Both models use a potential pres-
sure. The results for a low slope Lorenzian hill
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were compared with A = 50 m, L = 250 m and z, =
0.03 m. Speedup, kinetic energy and dissipation profiles
before, at and after the hill top were compared (Fig. 1).
We can see that the second order model gives more dif-
ference in the speedup as function of downwind distance.
The profiles, also the ones for kinetic energy and dissi-
pation, differ most behind the hill. However, considering
the much larger sophistication of the Zeman and Jensen
model the overall agreement is much better than ex-
pected.

We conclude that the E-¢ turbulence model is very use-
ful and that the violation of the flow equations without
making the correct boundary following coordinate trans-
formation is of minor importance.
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Fig. 1. Comparison of the E-¢ model (solid lines) and
the second order model by Zeman and Jensen
(dashed lines) for a Lorenzian hill with
h=50 m, L = 250 m, and z, = 0.03 m
a) speedup, b) kinetic energy, c) dissipation.



THE ‘FLOW’ AND ‘TEMPERATURE’ EQUATIONS
APPLIED TO FLOW OVER HILLS

Characteristic for a nonneutral boundary layer is that
the heat flux at the ground is non-zero, while zero at
the top. In a homogeneous terrain this means that the
diffusive term in the temperature equation is non-zero
and the solution is necessarily nonstationary. However,
to reduce the output of our model we restrict ourselves
to stationary situations and are thus forced to consider
only constant flux regions (surface layers). These regions
extend to heights - that are luckily sufficient for our pur-
pose of predicting the seeing in the first 100m.

With the analytical inlet profiles of 02, ey, the U, E, ¢
fields calculated with the PU model and the analytical
T field throughout the domain, we solve the equations
for 82 and €4 and derive C}. The equation for €4 contains
three constants with a wide variety possible. This gave
us the opportunity to tune the constants to the mea-
surements made at La Silla (VLT report no 55, p88). In
our model La Silla is described by a Lorenzian hill with
h=300 m, L.=1 km, L,=100 km, z5=.01 m, and the

measurement conditions by u,=.6 m/s and 6 = 0.09K.

The different set of constants tried are :

set 1 : {ay, a2, a3} ={1,1,1},
set 2 : {a, az, a3} ={2.36,2.02,1.5} and
set 3 : {ai, az, a3} ={5,3.38,3.38}.

The different CZ profiles at the top of the hill for set 1,
2 and 3 are shown in Fig. 2.

Only set 1 gives the undisturbed flow at higher heights
in this case of stable flow over a hill (not shown here).
The set {a), a;, a3} ={1,1,1} represents the data best if
the constant v in the C} relation to ¢ and ¢y (Eq(8))
is set equal to y=1.6. Set 2 would require a larger v
causing unrealistic values for C}? at higher heights. The
reverse is true for set 3. Here smaller values are required
whereas the theory discussed before indicates that
should rather be larger.

We settle for the combination of set 1 and 7=1.6.

10
2
o
-
Z
Nv
J

0

Fig. 2.
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Measurements () and calculated profile
of the temperature structure function
C3(z) (in 1073 K2 m~23)
on top of La Silla modelled by a Lorenzian hill
with A=300 m, L,=1000 m, L,=100000 m,
20=.01 m, u,=.58 m/s
for different constant sets {ai, a2, as}
in the €4 equation:
set 1: {a},as,a3} ={1,1,1},
set 2 : {ay,ay, a3} ={2.36,2.02,1.5} and
set 3 : {a;,az,a3} ={5,3.38,3.38}.
< inner layer results.



MODELLING OF LA SILLA, PARANAL, MONTURA
AND ARMAZONI

Different mountains in Chile were considered as poten-
tial sites for the VLT and measuring campaigns were
set up. A first preliminary modeling of the mountains
Paranal, Armazoni and Montura is made with Loren-
zian shapes. The combinations of variables determining
the hill shape are chosen so that La Silla, Paranal, Mon-
tura and Armazoni were approximated as best we could.
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Montura | 300m { 1km | .5 km | .05m | 11 m | .62 2.59
Armazoni | 300 m | 1 km | 1 km O0lm|{6m | .62 3.84

Measurements are found in VLT report No. 55 and VLT
report No. 62, p. 106, Fig. 4.72. The model results fit the

data very well (Fig. 3).
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Fig. 3. Measurements () and calculated profile of the temperature structure function C?(2) (in 1073 K? m~%?)

a) on top of La Silla modelled by a Lorenzian hill with k, L., Ly, zo = 300, 1000, 100000, .01 m and u, =.58 m/s
b) on top of Paranal modelled by a Lorenzian hill with &, L, L, zo = 600, 1000, 1000, .1 m and u, =.87 m/s

c) on top of Montura modelled by a Lorenzian hill with h, L., L,,zo = 300, 1000, 500, .05 m and u, =.75 m/s
d) on top of Armazoni modelled by a Lorenzian hill with k, L., Ly, zo = 300, 1000, 1000, 01 m and u, =.58 m/s

< inner layer results.



DISCUSSION

We feel that our model has the following shortcomings:

o The assumption in the PU model that the pressure
is potential and that the extra terms are small in
the equation of motion due to the curvature of
the coordinate system is only valid for flow over
small slopes. This means that we have to restrict
ourselves to lower hills.

o The vertical velocity plays a very important role
in the temperature equation. A velocity of 3 cm/s
already has an effect of a°C. In our stretched coor-
dinate model we were forced to exclude the tem-
perature from calculation. For the cases considered
in this report that was not of great importance
as the thermographic investigations of the unde-
veloped sites showed that the hills were thermally
homogeneous (VLT report No.62, page 142). How-
ever in order to catch influences of heat flux dif-
ferences occuring due to roads and buildings we
would need to calculate the temperature distribu-
tion in the flow.

To be able to improve on all these shortcomings a new
model is being developed at Risg National Laboratory.
The flow equations are written in a boundary following
coordinate system, enabling us to calculate separation in
front and behind obstructions as well as the temperature
distribution in the air.
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