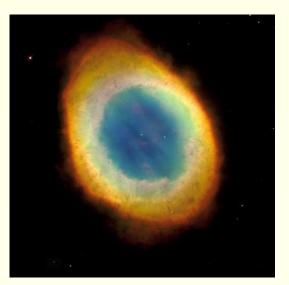
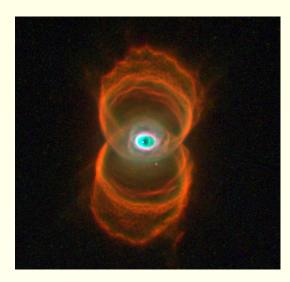
Stellare Winde Staubgetriebene Winde


Thomas Rivinius


WS 2004/2005

Landessternwarte Heidelberg, Königstuhl

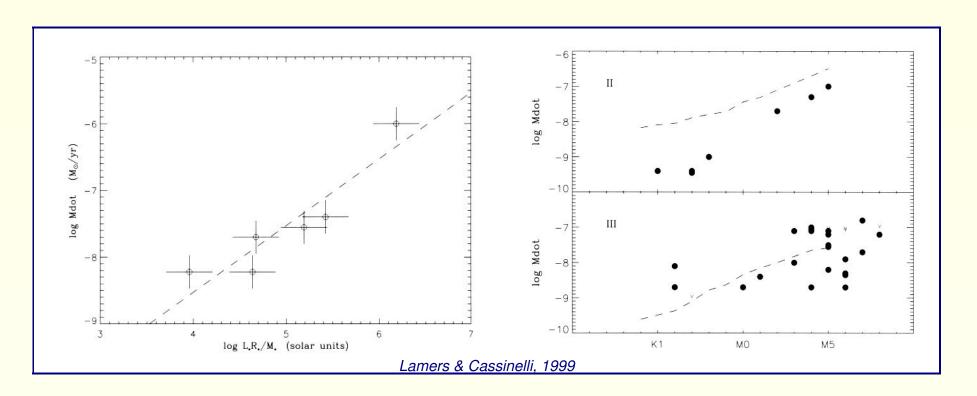
T.Rivinius@lsw.uni-heidelberg.de

Winde von kühlen Überriesen

HST-Bilder. Nur der Ringnebel, ganz links, ist in etwa natürlichen Farben abgebildet

- Kühle Sterne auf der Hauptreihe haben nur Korona-Winde
- Erst in späteren Entwicklungsstadien kommt es zu starken Winden, besonders bei Sternen im asypmtotischen Riesenast (AGB-Sterne)
- Typische Massenverlustraten um $10^{-8}-10^{-7}\,\mathrm{M}_{\odot}\mathrm{yr}^{-1}$, extrem bis hin zu $10^{-5}\,\mathrm{M}_{\odot}\mathrm{yr}^{-1}$.
- Sterne bis hin zu etwa $8\,{\rm M}_\odot$ enden unterhalb der Grenzmasse einer SN-Explosion, d.h. sie verlieren in des späten Phasen ihren Entwicklung um $80\,\%$ ihrer Masse.
- Der Massenverlust in dieser Phase wird dann als planetarischer Nebel sichtbar.

Anzeichen für Massenverlust: Optische Spektroskopie

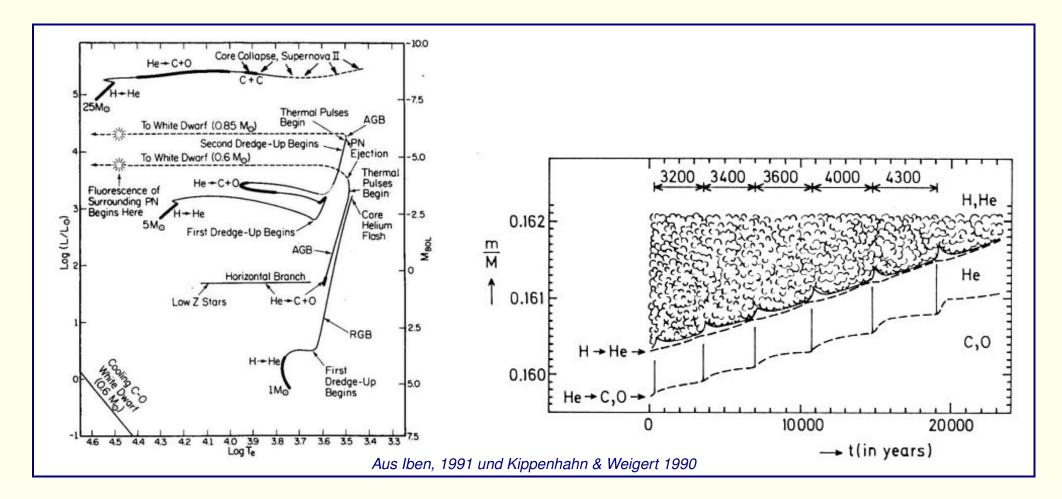

- Erste Hinweise auf Winde roter Überriesen im visuellen Paar α Her (Deutsch, 1956):
 - Im Spektrum des spektroskopischen Doppelsterns α^2 Her (G5 III+A3 V) waren stationäre Absorptionslinien von Nal, Cal, Call und Fel zu finden.
 - Wegen stationärer Linien und Ionisation mussten diese aus einer Hülle um den M5 Überriesen α^1 Her stammen.
 - Separation 5", Ausdehnung des Windes daher mind. 1000 AE, Massenverlust um $3\times 10^{-8}\,{\rm M}_{\odot}{\rm yr}^{-1}$.
- Rote Überriesen haben keine P Cygni Profile und keine Windemission im optischen Bereich
- Gestreutes Licht in Absorption, entweder resonant an Linien wie z.B. Nal-D oder diffus am Staub prinzipiell meßbar, praktisch aber sehr schwierig.

Windanalyse in roten Riesen mit heißen Begleitern

Star	Type	M_{\bullet}	R_{\bullet}	log L.	\dot{M}	v_{∞}	v_{e}	v_{∞}/v_e
22 Vul	G3 II-Ib	4.3	40	2.99	6×10^{-9}	160	202	0.78
31 Cyg	K4 Ib	6.2	202	3.91	4×10^{-8}	80	108	0.74
ζAur	K4 Ib	8.3	140	3.41	6×10^{-9}	40	150	0.27
32 Cyg	K5 Iab	8.0	188	3.82	3×10^{-8}	60	127	0.47
δ Sge	M2 II	8.0	140	3.43	2×10^{-8}	28	147	0.19
α Sco	M1.5 Iab-Ib	18.0	575	4.68	1×10^{-6}	17	109	0.16
			66		38	km s ⁻¹		

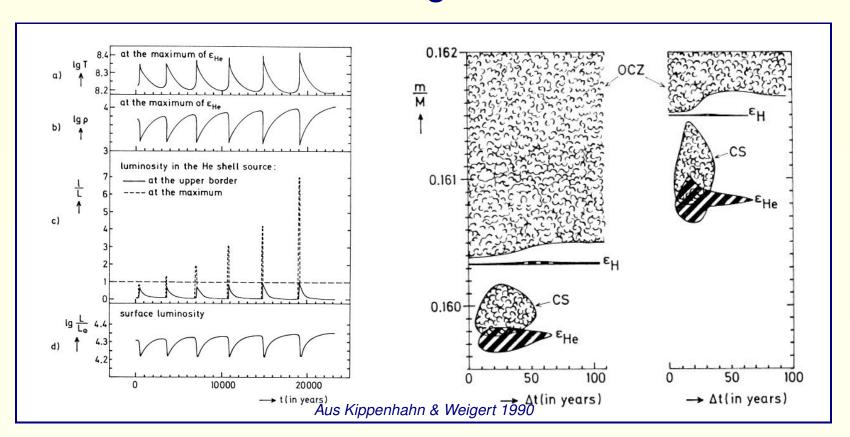
- Systeme ähnlich α Her bieten beste Möglichkeit zur Bestimung der Windparameter, z.B. in UV-Linien.
- Insgesamt nur wenige Überriesen zwischen G3 und M2 mit verlässlichen Masseverlustraten, alle in Doppelsternsystemen.
- Sonstige Messungen in H α oder verschobenen chromosphärischen Linien, weniger genau.

Massenverlustraten von roten Riesensternen

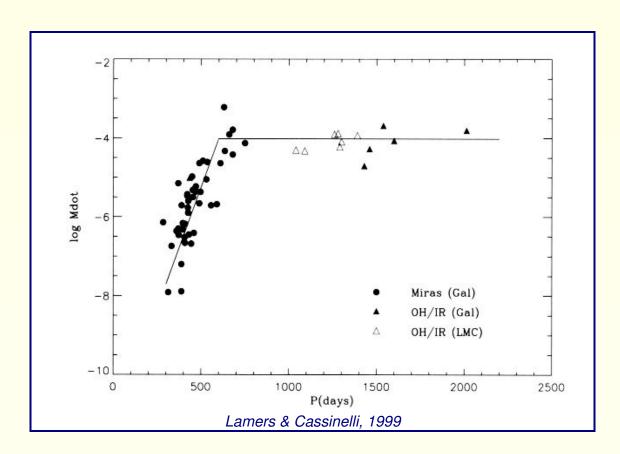


Reimers-Relation ist rein empirische Gleichung für Massenverlust kühler Sterne:

$$\dot{M} = 4 \cdot 10^{-13} \eta_R \frac{(L_{\star}/L_{\odot})(R_{\star}/R_{\odot})}{M_{\star}/M_{\odot}}$$


- Korrekturfaktor $\eta_R = 1/3...3$, abhängig vom Sterntyp, z.B. $\eta_R = 1$ für rote Überriesen.
- Links Überriesen, rechts LC II und LC III-Sterne. Relation gilt nicht für z.B. AGB-Sterne.

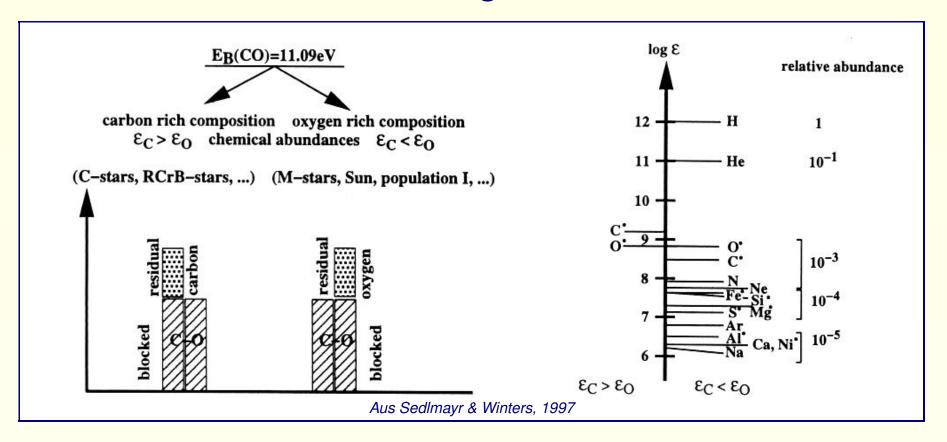
AGB-Sterne


- AGB-Sterne tragen damit zu etwa 50 % zur Erneuerung des interstellaren Mediums bei, zusammen mit Winden heißer Sterne und SN-Explsionen. Zwei Typen:
 - → Frühe AGB-Sterne sind stabil heliumbrennend um einen CO-Kern: E-AGBs
 - → Darauf folgen TP-AGB-Sterne ("Thermally Pulsing"):

Innere Entwicklung der AGB-Sterne

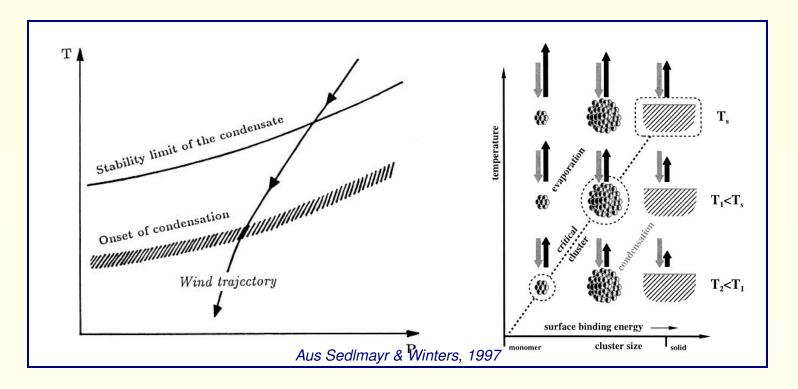
- \rightarrow Wasserstoff brennt in Schale um Kern erneut und produziert Helium (typisch 10^5 a).
 - \sim Dieses Helium zündet und treibt wasserstoffbrennende Schale auswärts (10⁴ a).
 - ightharpoonup Es kommt zur thermonuklearen Katastrophe ("thermal pulse", 10^2 a)
 - He-Brennen erlischt dabei und Schalen kontrahieren wieder. Zyklus beginnt erneut, bis zu einigen Dutzend mal.

Massenverlust von AGB-Sternen

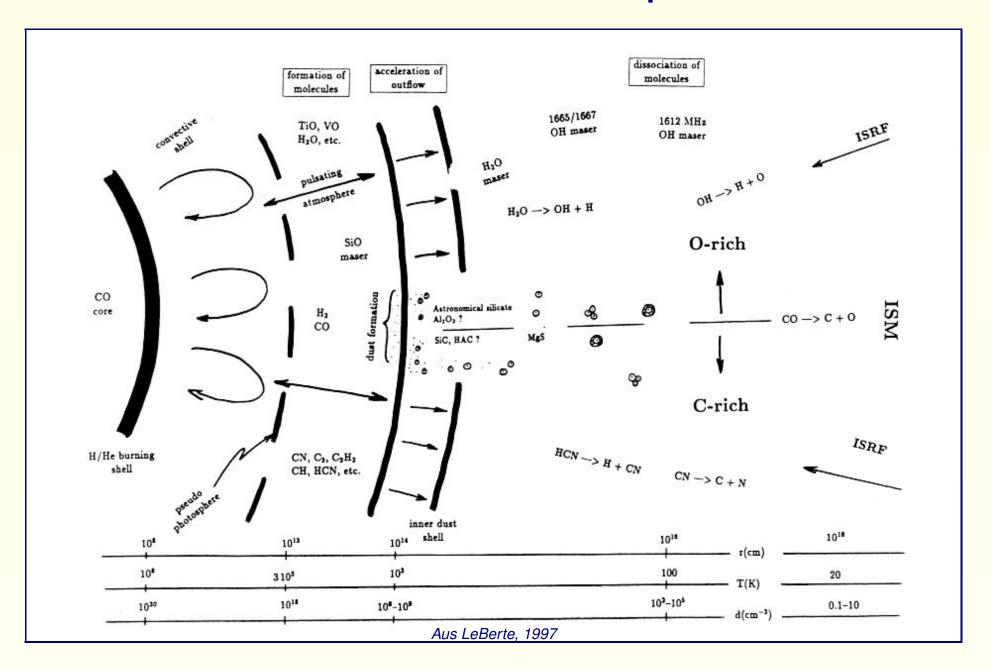


- Massenverlustraten langperiodischer Veränderlicher gegen Periode.
- Für $P<600\,\mathrm{d}$ gilt $\log\dot{M}=-11.4+0.0123\times P(\mathrm{days})$, flacht bei $\dot{M}=10^{-4}\,\mathrm{M_\odot yr^{-1}}$ ab.
- Die fundamentale Periode eines schwingenden Gasballs ist $\log P(\mathrm{days}) = -2.07 + 1.94 \times \log(R_{\star}/\mathrm{R}_{\odot}) 0.9 \times \log(M_{\star}/\mathrm{M}_{\odot})$

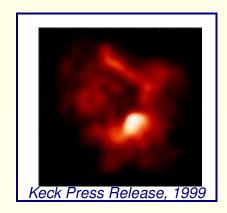
Windantrieb in AGB-Sternen


- Mehrere Windszenarien denkbar:
 - → Wind durch Strahlung angetrieben, Strahlungsdruck wirkt auf Staubkörner
 - → Wind durch "Schall"wellen angetrieben
 - → Wind durch Pulsation angetrieben
- Alle Szenarien erzeugen für sch alleine nur schwachen Wind, der zwar für normale Überriesen etc. ausreicht, aber nicht für AGB-Typen.
- AGB-Sterne sind im allgemeinen semireguläre oder langperiodische Variable, z.B. vom Mira-Typ, d.h. radiale Pulsation mit Perioden von hunderten Tagen
- Hybrid-Szenario: Stauberzeugung wird durch Pulsation phasenabhängig vervielfacht,
 Strahlungsdruck beschleunigt dann den Wind

Chemische Häufigkeiten im Wind

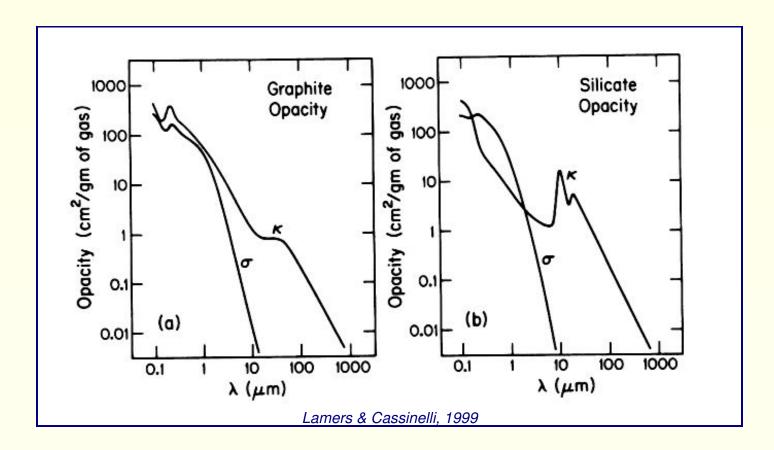

- Bei thermonuklearer Katastrophe des Heliumbrennens kann Konvektionszone bis zum Kern vordringen und vollständig prozessiertes Material and die Oberfläche befördern, "dregde-up" der Kernmaterie
- Wesentliche Windbestandteile, neben H, C und O → CO-Moleküle.
- C/O-Verhältnis in der Größenordnung 1, steigt durch "dredge-ups". D.h. CO-Moleküle immer mit großer Häufigkeit vorhanden.

Moleküle im Wind

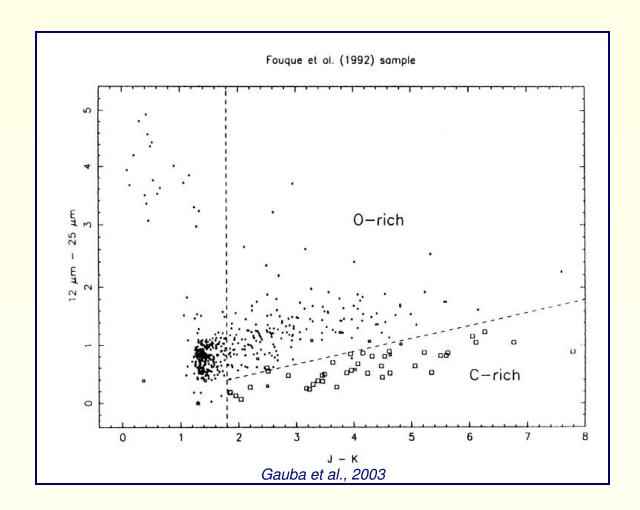


- → Wind zunächst mit Sauerstoffüberschuß vgl. mit C, dadurch Oxide im Wind dominant, z.B. TiO, VO, H₂O (M-Typ Spektren).
- → Falls bei dregde-ups auch s-Prozeßelemente an die Oberfläche kommen, zusätzlich ZrO, YO (S-Typ Spektren, machmal auch Linien des Tc).
- → Falls dregde-ups ausreichend effizient, später Moleküle von C₂, CN, HCN, C₂H₂ und s-Prozeßelemente (C-Typ Spektren)
- s-Prozeßelemente nur in TP-AGB-Sternen und Nachfolgern in der Sternentwicklung.

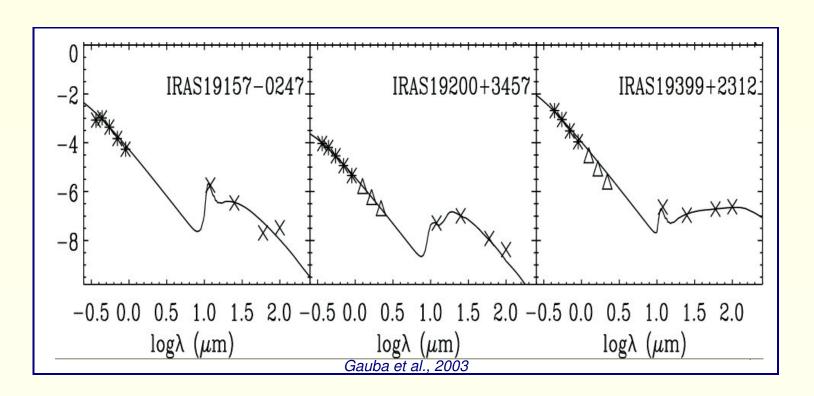
Struktur einer AGB-Atmosphäre



Wind in Polarimetrie und bildgebenden Verfahren


- Im optischen mitunter schwache neblige Hüllen zu sehen, bei CW Leo (C-Stern mit sehr starkem Massenverlust) um 40" groß.
- In näherer Umgebung von CW Leo Wind strukturreich.
- Winde oft nicht sphärisch, sondern axial symmetrisch, wie auch an Struktur der darauf folgenden PN zu erkennen.
- Streuung in nicht-sphärischen Hüllen führt zu Polarisation.
- Die Wellenlängenabhängigkeit des Polarisationsgrads p ermöglicht Aussagen über die Größe der Streuzentren, d.h. des Staubes.

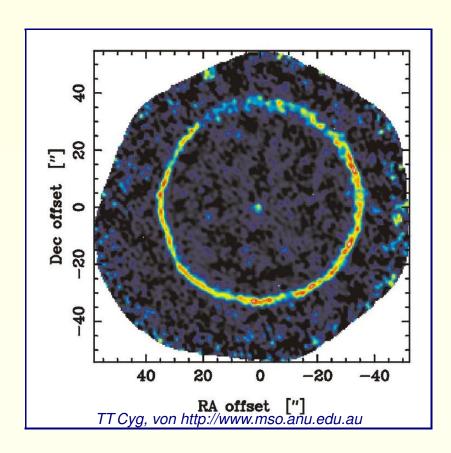
Staubspektren


- Opazität für Absorption (κ) und Streuung (σ) als Funktion der Wellenlänge und für die typischen Staubarten.
- Besonders Spitze in der Opazität von Silikaten bei etwa 10 μ m gut benutzbar, um beide Staubarten zu unterscheiden.

Infrarotbeobachtungen

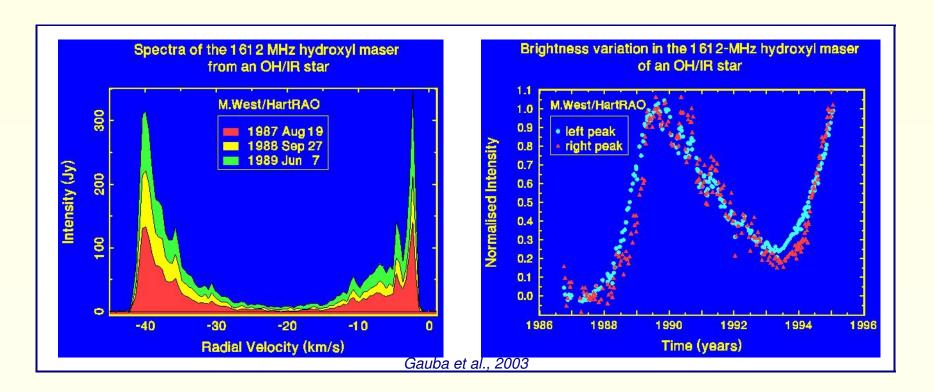
- Aus der Art des Infrarotexzesses läßt sich der Typ des Windes (Kohlenstoff- oder Sauerstoffreich) bestimmen.
- Oben: Sauerstoff, unten Kohlenstoff, links Quellen mit möglicherweise separierter Hülle statt Wind, keine klare Unterscheidung mehr möglich.

Spektrale Energieverteilung im Infrarot



- Im Infrarotbereich dagegen ist die Staubsignatur sehr auffällig.
- Staub weniger als 1 % des Windes, aber dominiert IR-Spektrum.
- Vom Boden aus nur bedingt beobachtbar, da Atmosphäre nur in einzelnen Bändern durchsichtig und thermische Emission der Luft, aber auch des Teleskops dominant um mehrere Größenordnungen.

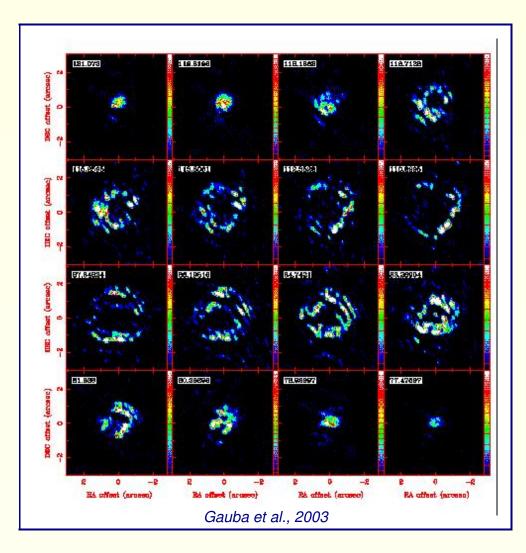
Radiobeobachtungen von AGB-Sternen


- Staub macht etwa 0.5 bis 1 % des Windes aus, der größte Teil ist in Form neutraler Atome oder Moleküle.
- Moleküle im Radiobereich in Vibrations- und Rotationsbanden gut beobachtbar.
- H₂ nur schwer zu beobachten, nächsthäufigstes Molekül ist CO, mit zunehmender Detektorsensitivität immer mehr und komplexere organische Moleküle gefunden.
- Molekulare Emission in CO meist angeregt durch Kollision mit H₂. Typischerweise beobachtete Linien sind Rotationslinien J(1–0) und J(2–1) bei 115 GHz und 230 GHz (2.6 und 1.3 mm)
- Sind nicht unbedingt Linien größter Intensität, aber andere Übergänge werden von der Atmosphäre absorbiert.
- Mit Hilfe von Moleküllinen läßt sich die Massenverlustrate von AGB-Sternen sehr viel leichter bestimmen als in normalen roten Überriesen.

Molekuklare Hüllen

- Bei manchen Sternen dichtere Hüllen deutlich vom Zentralobjekt abgesetzt.
- Auf Zeitskalen von Jahrtausenden stark variabler Massenverlust:
 - Bei S Scuti Hülle mit $5 \cdot 10^{17}$ cm Durchmesser und $1 \cdot 10^{17}$ cm Dicke, Massenverlust muß vor 10 000 Jahren um $4 \cdot 10^{-5} \, \mathrm{M_{\odot} yr^{-1}}$, vgl. mit heute um $3 \cdot 10^{-8} \, \mathrm{M_{\odot} yr^{-1}}$ gelegen haben.

OH/IR-Sterne



- In manchen AGBs Massenverlust so hoch, dass der darunterliegende Stern im optischen nicht mehr sichtbar ist.
- Alle Strahlung reprozessiert als Infrarot- und Radioemission
- Radioemission z.B. in Form von OH-Masern zwischen 1612 MHz und 1720 MHz, OH/IR Sterne
- Zeitverzögerung der Intensität beider Peaks ist Laufzeiteffekt durch ausgedehnte Hülle

Hydroxyl-Maser

- Hydroxyl entsteht durch Photodissoziation von Wassermolekülen (${
 m H_2O} + h
 u
 ightarrow {
 m OH} + {
 m H}$)
- In grösserer Entfernung vom Stern wird OH wieder vernichtet, ebenfalls durch Photodissoziation in O und H.
- Im Zwischenbereich kann Maser-Emission in Rotationsübergängen entstehen.
- Im Grundzustand vier Niveaus, Auswahlregeln lassen vier Übergänge zu (1612 und 1665 als Hauptlinien ohne Drehimpulsänderung, 1667, und 1720 MHz, Satellitenlinien mit Drehimpulsänderung)
- 1720 MHz Linie nur in Vorhauptreihenobjekten, andere drei auch in entwickelten Sternen.
- Intensitäten so stark, dass Maser-Mechanismus am Werk sein muß:
 - → Je nachdem ob Hauptlinien (Typ I) oder Satellitenlinien (Typ II) dominant anderer Pumpmechanismus.
 - → Auch andere Moleküle mit Mikrowellenübergängen können Zur Maseremission angeregt werden, z.B. H₂O.

Hüllentomographie

- Spektral aufgelöstes Imaging im Radiobereich
- Durch Dopplereffekt kann die 3-D-Struktur der expandierenden Hülle vermessen werden.

Sphärisch stetiger Wind

D.h. die Massenverlustrate ist konstant

$$\frac{d(\rho v r^2)}{dr} = 0 \qquad \dot{M} \equiv 4\pi r^2 \rho v = \text{const.}$$

Windimpuls

$$v\frac{dv}{dr} = -\frac{GM}{r^2} - \frac{1}{\rho}\frac{dP}{dr} + g_x$$

• Energie im Wind:

$$\Delta \dot{E} = \dot{M} \left(\frac{v^2}{2} + \frac{\gamma}{\gamma - 1} \frac{P}{\rho} - \frac{GM}{r} \right)_{r_0}^r \quad \text{(kin. + inn. + grav.)}$$

$$= \int_{r_0}^r (\dot{M} g_x + 4\pi Q_x r'^2) dr' - 4\pi (r^2 F_{\text{cond.}})_{r_0}^r \quad \text{(mech. + Heiz. + Waermel.)}$$

Windenergie

• Mit der Schallgeschwindigkeit als $v_{\rm son}^2 \equiv P/\rho$ und der Fluchtgeschwindigkeit $v_{\rm esc}^2 \equiv 2GM/r$ sind

$$\frac{\Delta \dot{E}}{\dot{M}} = \left(\frac{v_{\infty}^{2}}{2} + \frac{\gamma v_{\text{son},\infty}^{2}}{\gamma - 1}\right) - \left(\frac{v_{0}}{2} + \frac{\gamma v_{\text{son},0}^{2}}{\gamma - 1} - \frac{v_{\text{esc},0}^{2}}{2}\right)$$

$$\approx \frac{v_{\infty}^{2}}{2} + \frac{v_{\text{esc},0}^{2}}{2} = \int_{r_{0}}^{\infty} (g_{x} + 4\pi r'^{2} \frac{Q_{x}}{\dot{M}}) dr' - \frac{4\pi (r_{0}^{2} F_{\text{cond.},0} - r_{\infty}^{2} F_{\text{cond.},\infty})}{\dot{M}}$$

Notwendiger Energiefluß

$$F_{\rm E} \equiv \frac{\Delta \dot{E}}{4\pi R^2} \approx \left(\frac{\dot{M}}{10^{-14} \rm M_{\odot} yr^{-1}}\right) \left(\frac{M}{\rm M_{\odot}}\right) \left(\frac{\rm R_{\odot}}{R}\right)^3 \left(1 + \frac{v_{\infty}^2}{v_{\rm esc}^2}\right) 2.2 \times 10^4 \frac{\rm erg}{\rm cm^2 s}$$

- Für Sonnenwind mit $\dot{M}=2\times 10^{-14} \rm M_{\odot} yr^{-1}$ und $v_{\infty}\approx v_{\rm esc}$ ist $F_{\rm E}\approx 1\dots 5\times 10^5 \frac{\rm erg}{\rm cm^2 s}$
- Anders als im Sonnenwind und in Winden heißer Sterne gilt in Winden kühler Sterne $v_{\infty} \ll v_{\rm esc}$ an der Sternoberfläche
- Für den Energiefluß zweier Beispiele ergibt sich:
 - → K5 III: $\dot{M} = 1 \times 10^{-7} \rm M_{\odot} yr^{-1}$, $M \approx 16 \rm M_{\odot}$, $R \approx 400 \rm R_{\odot}$, d.h. $F_{\rm E} \approx 6 \times 10^4 \frac{\rm erg}{\rm cm^2 s}$
 - \rightarrow Mira: $\dot{M}=2\times10^{-6}\mathrm{M}_{\odot}\mathrm{yr}^{-1}$, $M\approx1\mathrm{M}_{\odot}$, $R\approx400\mathrm{R}_{\odot}$, d.h. $F_{\mathrm{E}}\approx5\times10^{4}\frac{\mathrm{erg}}{\mathrm{cm}^{2}\mathrm{s}}$
- z.B. Schallwellen nicht in der Lage, diesen Energiefluß aufrecht zu erhalten, fallen als Windantrieb aus.

Windimpuls

- Ähnliche Überlegungen wie bei Winden heißer Sterne. Ob Strahlung auf Resonanzlinien oder Kontinuum wirkt ist für Gesamtbetrachtung weniger wichtig.
- Windimpuls vs. Photonenimpuls auch hier:

$$\eta_{\rm mom} = \frac{\dot{M}v_{\infty}}{L_{\star}/c}$$

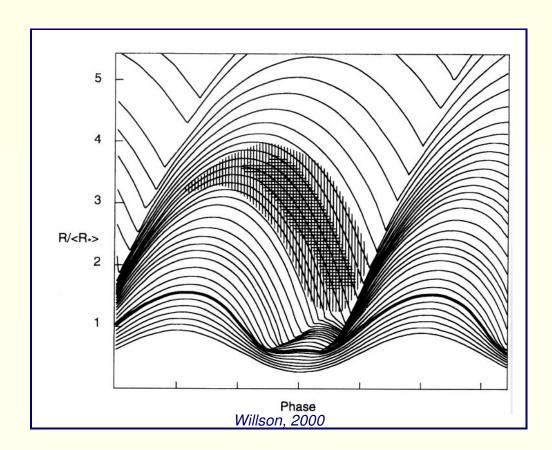
• Analog gibt es auch einen maximalen Massenverlust für das "single scattering limit", also $\eta_{\rm mom}=1$.

$$\dot{M}_{\text{max},1} = \frac{L_{\star}}{v_{\infty}c}$$

• für einen AGB-Sterm z.B. typisch $L_\star=3\times10^4{\rm L_\odot}$ und $v_\infty=30\,{\rm km\,s^{-1}}$. Dann ist $\dot{M}_{\rm max,1}=2\times10^{-5}\,{\rm M_\odot yr^{-1}}$, was in der Grössenordnung auch den beobachteten typischen Werten entspricht.

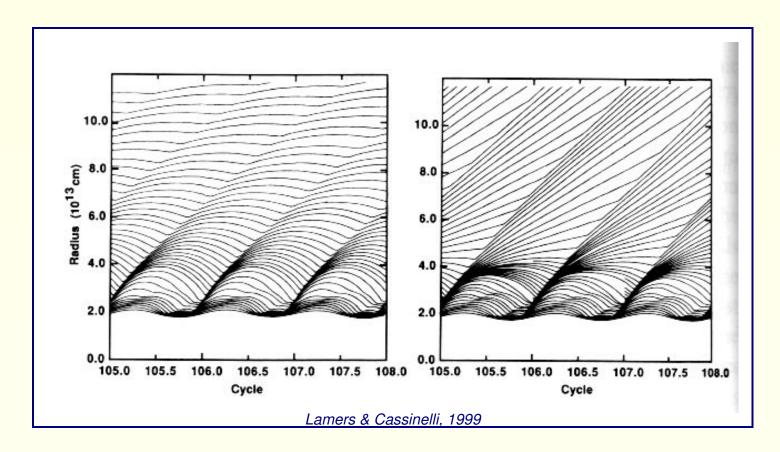
Atmosphärische Skalenhöhe

 \bullet Atmosphärenstruktur (Druck) variiert mit $P \propto e^{-z/H}$ in geometrisch dünnen Athmosphären.

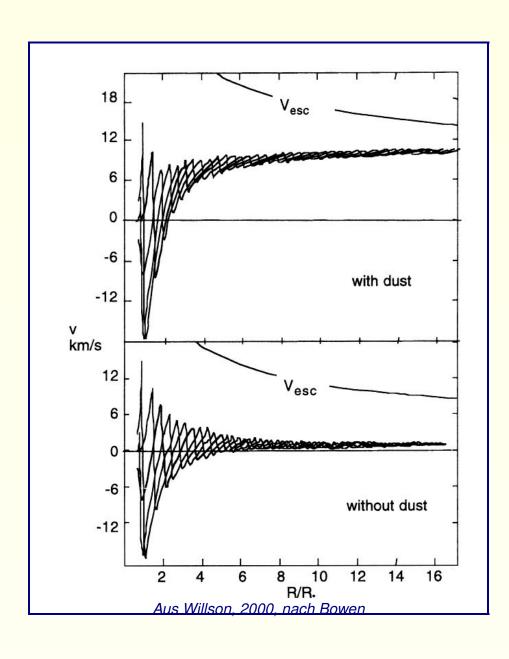

$$\frac{H}{R} = \frac{v_{\text{son}}^2}{Rg_{\text{grav},0}} = \frac{2v_{\text{son}}^2}{v_{\text{esc},0}^2}$$

- Beispiel kühler Riesenstern: $T_{\rm eff} = 3000\,{\rm K}$, also $v_{\rm son} \approx 5\,{\rm km\,s}^{-1}$
 - \rightarrow $M \approx 1...10 \,\mathrm{M}_{\odot}$, $R \approx 100...400 \,\mathrm{R}_{\odot}$, also $v_{\mathrm{esc}} \approx 40...60 \,\mathrm{km \, s}^{-1}$
 - ${\bf Z}$ Schall vs. Fluchtgeschwindigkeit $5\,{\rm km\,s^{-1}}$ zu $60\,{\rm km\,s^{-1}}$, deswegen $v_{\rm son}^2\ll v_{\rm esc,0}^2$ und dann auch

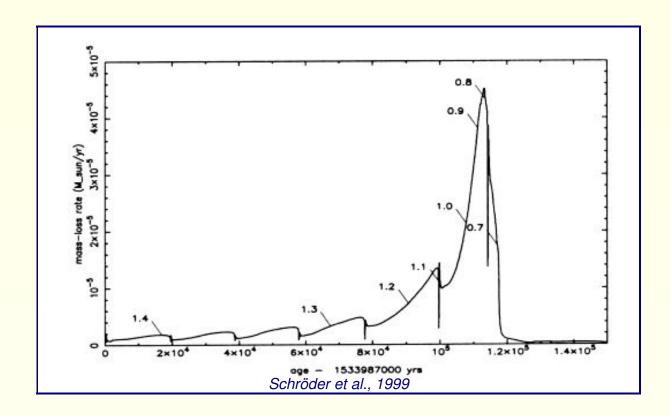
$$\frac{H}{R} \ll 1$$


 Skalenhöhe ≪ Radius, reine Gasatmosphäre also wirklich geometrisch dünn, jedenfalls in Zwergen (LC V) bis Riesen (LC III)

Skalenhöhe und Massenverlust


- Bei kleiner Skalenhöhe Dichte am kritischen Punkt nicht ausreichend, um starken Massenverlust zu erklären.
- D.h. Skalenhöhe muß größer sein als in reiner Gasatmosphäre zu erwarten.
- Mechanismus, mit dem dies erreicht wird ist Staubbildung z.B. durch Pulsation: Erhöht in hell, um Größenordnungen erhöht in dunkel schraffiertem Bereich.

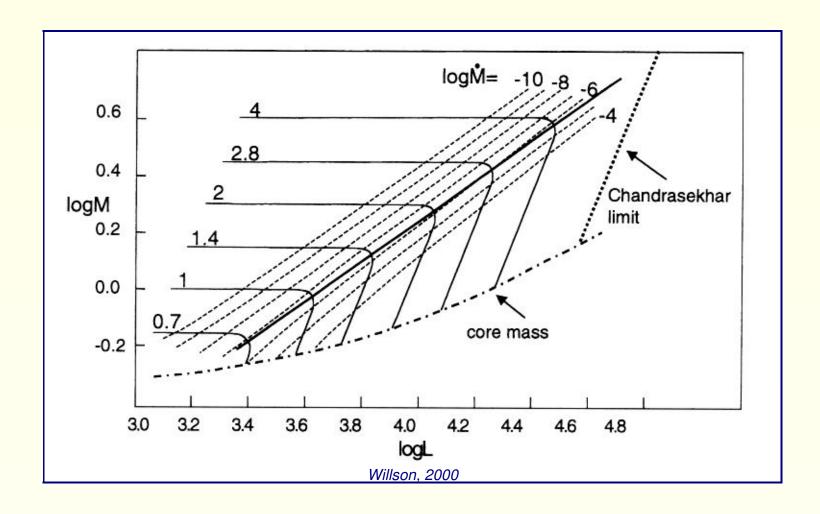
Pulsation mit und ohne Staub


- Radiale Struktur als Funktion der Zeit in pulsierender Atmosphäre
- Links: Pulsation ohne Staubbildung, sehr langsame Auswärtspropagation der äußeren Schichten.
- Rechts: Mit Staub Beschleunigung nach außen schon bei vergleichsweise kleinen Radien.

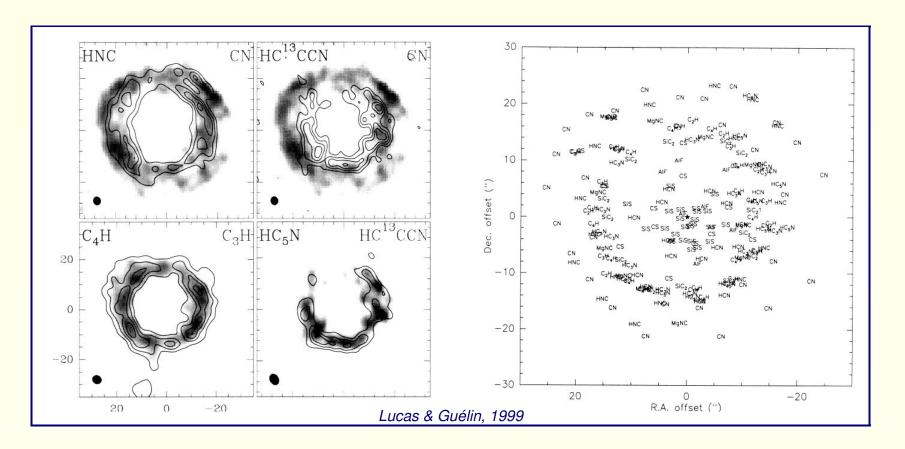
Windbeschleunigung

- Modell wie auf letzter Folie
- → Fluchtgeschwindigkeit für den jeweiligen Radius eingezeichnet.
- Beschleunigungskurve deutlich weniger steil als bei Resonanzliniengetriebenen Winden.
- → In Kontinuumsgetriebenen Winden kein Sobolev-Prinzip, d.h. Wind schiebt sich nicht aus eigenem Absorptions-"Schatten"

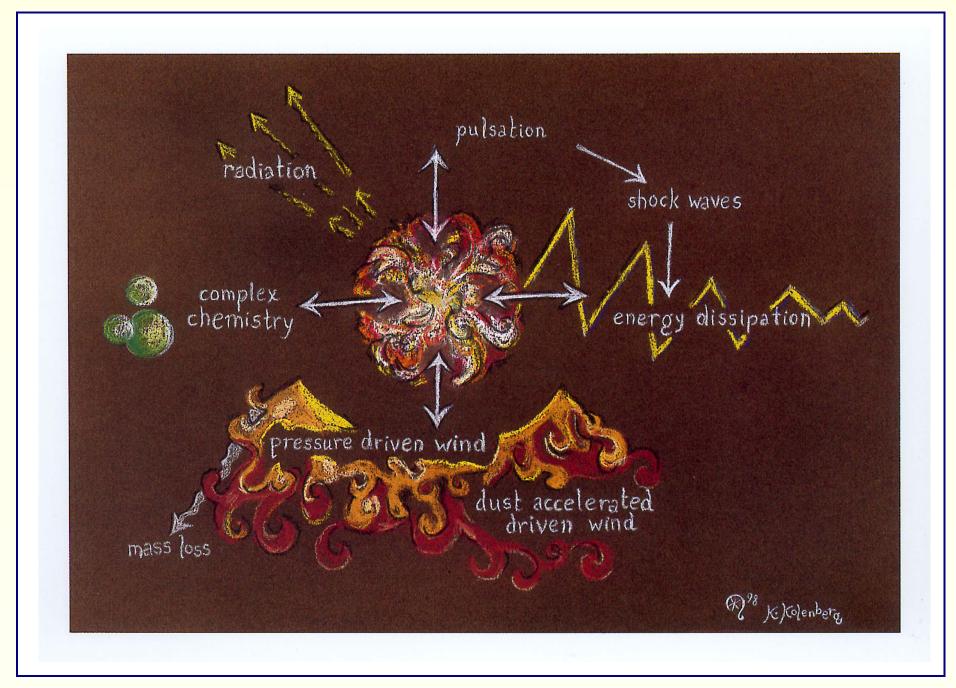
Entwicklung der Massenverlustrate mit der Zeit


- Stern von $M_{\rm ZAMS}=2.25{
 m M}_{\odot}$ in der AGB-Phase, "thermal pulses" gut zu erkennen als Einbrüche im \dot{M} .
- In dieser "Superwind"-Phase Reduktion der Sternmasse um 50 % von 1.4 ${\rm M}_{\odot}$ auf 0.7 ${\rm M}_{\odot}$.
- Superwind kennzeichnet $\dot{M} > 10^{-5} \rm M_{\odot} yr^{-1}$ -Phase, in der Planetarische Nebel von einigen $1/10 \, \rm M_{\odot}$ im wesentlichen gebildet werden.

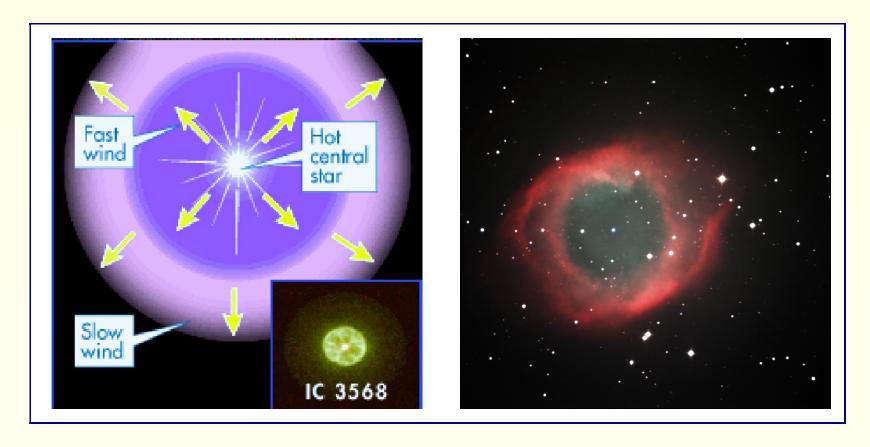
Die untere Grenze für Superwinde



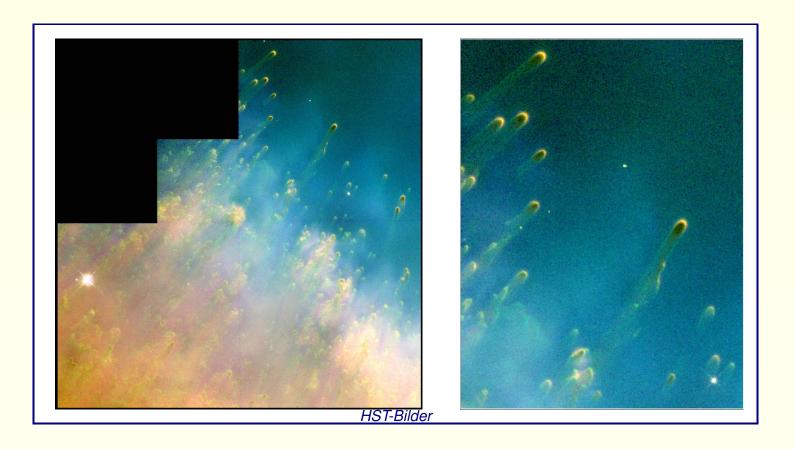
- Wie zuvor, aber jetzt für $M_{\rm ZAMS} = 1.10 {
 m M}_{\odot}$.
- Nur noch sehr kurz Superwind in der leuchtkräftigsten Phase der AGB-Entwicklung ("AGB-tip phase")
- Rechts: Ausschnitt aus dem HRD, der die Entwicklung des $1.10 M_{\odot}$ -Modells im letzten thermal pulse zeigt.
- Bei kleineren Massen zeigen manche Modelle keine Superwindphase mehr.


Massenentwicklung von AGB-Sternen

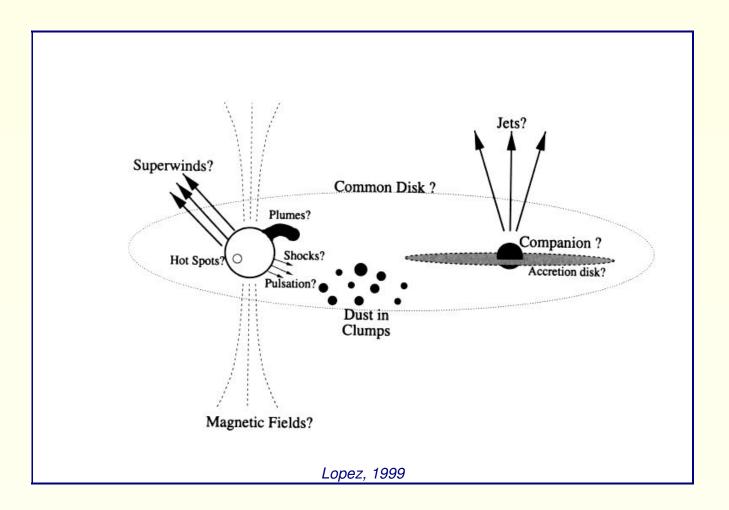
Die Umgebung von OH/IR-Sternen



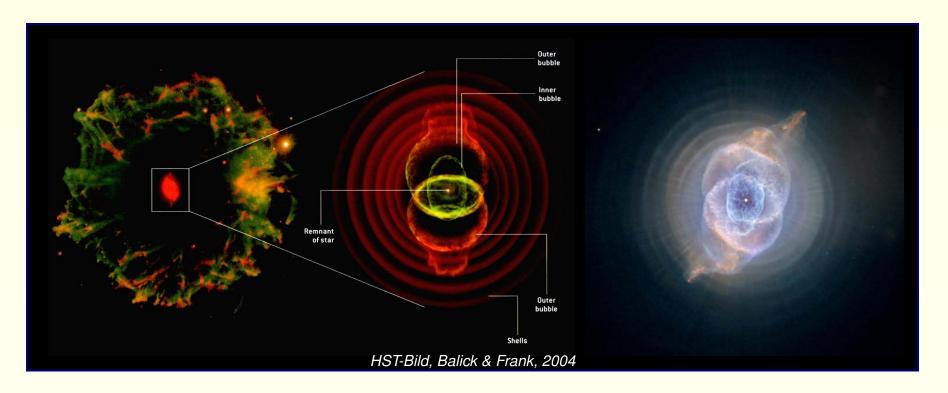
- OH/IR-Sterne sind in Superwind-Phase, Umgebung ist vor allem im Infraot- und Radiobereich beobachtbar.
- Verschiedene Molekülsorten bei verschiedenen Radien vom Stern.
- In Wirklichkeit sphärisch symm. Schalen, gezeigt nur die Teile auf der Himmelsebene durch Mit Hilfe der Doplertomographie (siehe letzte Stunde)


Von Katrien Kolenberg, nach einer Zeichnung von E. Sedlmayr

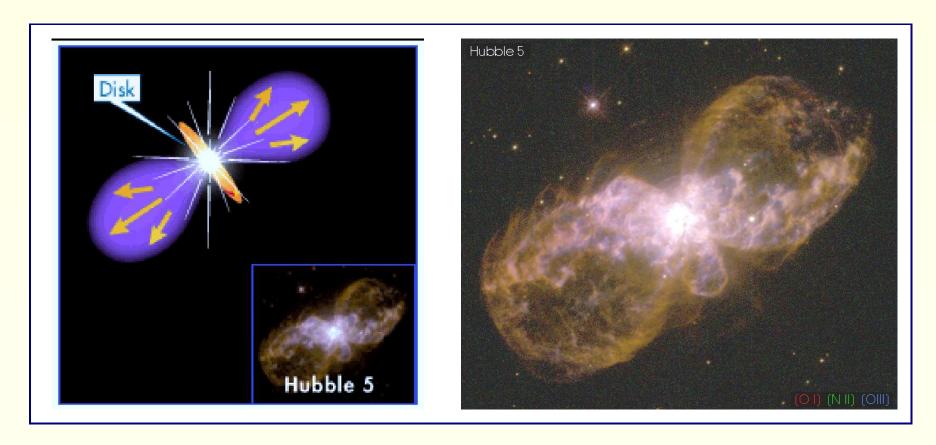
Planetarische Nebel durch "Interacting winds"


- Einzelsterne ohne dominante Magnetfelder erzeugen sphärisch symmetrische PN durch aufeinander folgende Windphasen:
 - erst langsamer, dichter AGB-Wind
 - → Zentralstern kontrahiert zum CSPN-Wolf-Rayet-Typ mit schnellem Wind. Der leert die innere Region, UV-reiche Strahlung des CSPN bringt Nebel zum Leuchten.

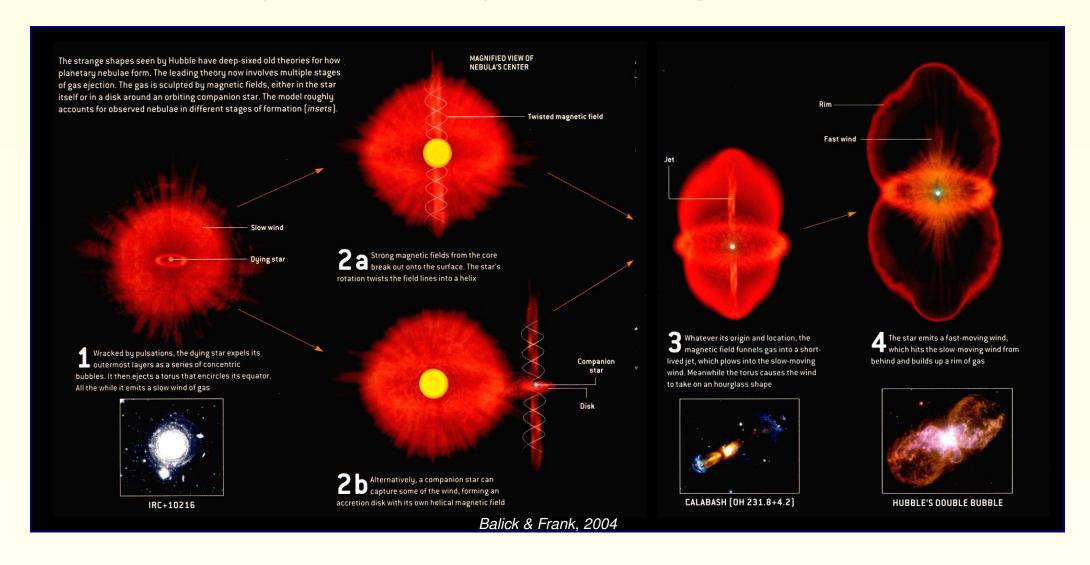
Wind-Wind Interaktion in Planetarischen Nebeln


- Details im Helix-Nebel, inhomegene Windstruktur des AGB-Winds ("blobs") setzen dem schnellen WR-Wind stellenweise mehr Widerstand entgegen
- Dadurch stärkere Ionistation an sternzugewandter Seite, leuchtet auf

Abweichungen von der sphärischen Symmetrie


- Sphärische Symmetrie bei weitem nicht in allen Planetarischen Nebeln vorhanden, im Gegenteil eher die Ausnahme, je besser die Bilder desto offensichtlicher.
- Möglichkeiten durch Magnetfelder, Doppelsterne mit Massenübertrag, gemeinsame ("circumbinary") Hüllen ode Scheiben.

Beispiel: Katzenaugennebel


- Äußerste Hülle von früherer Massenverlustphase.
- Konzentrische Hüllen möglicherweise durch Windmodulation durch "thermal pulses" in der AGB-Phase.
- Jet längs einer Magnetfeldachse oder durch akkretierenden Begleiter sorgt für schnelleren polaren Wind, daher die beiden "Kappen".
- Äquatoriale Ebene ausgezeichnet; Signatur einer früheren Scheibe?

Beispiel: Hubble 5

- Nichtsymmetrische Struktur durch Doppelsternentwicklung.
- Möglicherweise früheres Stadium als Katzenauge, Scheibe um Doppelstern entweder noch vorhanden oder noch nicht lange aufgelöst.

Entwicklungsszenarien asymmetrischer planetarischer Nebel

Zusammenfassung

- Winde kühler Sterne werden durch Strahlungsdruck beschleunigt. Absorptionsprozess nicht Linien-, sondern Kontinuumsopazität.
- In langperiodischen Veränderlichen (LPVs, radial pulsierende Sterne) in bestimmten Pulsationsphasen stark erhöhte Staubbildung, deutlich höherer Massenverlust in diesen Objekten.
- Der Massenverlust in diesen "Superwind"-Phasen ist wesentlich für die Entstehung planetarischer Nebel.