

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 2 of 24

CHANGE RECORD

Issue Date Affected Paragraphs(s) Reason/Initiation/Remarks

1.0 18/01/2010 All First version

2.0 20/02/2013 All Added feedback from reviewers, added new OCA

features

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 3 of 24

TABLE OF CONTENTS
1. INTRODUCTION ... 4

1.1 Purpose of the document .. 4
1.2 Scope of this document .. 4
1.3 Definitions, acronyms and abbreviations ... 4

1.3.1 Definitions .. 4
1.3.2 Acronyms .. 4

1.4 Applicable documents .. 4
1.5 Reference documents ... 4

2. OVERVIEW .. 5
3. OCA LANGUAGE .. 7

3.1 File structure .. 7
3.2 Lexical conventions and syntax ... 7

3.2.1 Line Structure ... 7
3.2.2 Comments ... 8
3.2.3 Identifiers, FITS keywords and reserved words ... 8
3.2.4 Data Types .. 8
3.2.5 Operators ... 9

3.3 OCA Rules ... 10
3.3.1 Classification rules .. 10
3.3.2 Organization/Grouping rules .. 12
3.3.3 Association/Action rules ... 13

4. OCA APPLICATIONS ... 16
4.1 ABbuilder ... 16
4.2 Data Organiser ... 16
4.3 Archive Data Organizer ... 17
4.4 CalSelector ... 17
4.5 Gasgano .. 18

5. USAGE OF C PREPROCESSOR DIRECTIVES IN OCA RULES .. 19
6. APPENDIX A – OCA RULES EXAMPLE .. 21
7. APPENDIX B – REDUCTION BLOCK EXAMPLE .. 22
8. APPENDIX C – ASSOCIATION BLOCK EXAMPLE ... 23

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 4 of 24

1. INTRODUCTION

1.1 Purpose of the document

This document describes the OCA (Organization, Classification and Association) language, which is used at

ESO to define data organization and association rules for the following applications:

 Pipeline processing

 Preparation of data packages

 Calibration selection for archive requests

 Data organization in Reflex

 Etc.

1.2 Scope of this document

The OCA language is used by various applications in different operational scenarios. This document focuses

mainly on the generic (application-independent) aspects of the language and does not provide a detailed

description of the individual OCA-based applications.

An overview of the main OCA applications is however provided in Chapter 4.

1.3 Definitions, acronyms and abbreviations

1.3.1 Definitions

A domain-specific programming language (domain-specific language, DSL) is a programming language

designed for, and intended to be useful for, a specific kind of task. This is in contrast to a general-purpose

programming language, such as C or general-purpose modeling languages like UML.

1.3.2 Acronyms

OCA Organization Classification Association

DO Data Organizer

DFO Data Flow Operations

DFS Data Flow System

AB Association Block

RB Reduction Block

FITS Flexible Image Transport System

DSL Domain Specific Language

PI Principal Investigator

1.4 Applicable documents

The following documents of the exact issue shown form a part of this document to the extent specified herein.

In the event of conflict between the documents referenced herein and the contents of this document, the

contents of this document shall be considered as superseding requirement.

No Document Title Reference

1.5 Reference documents

The following documents contain additional information and are referenced in the text:

No Document Title Reference

RD1. OCA User Requirements Document

RD2. C Preprocessor http://en.wikipedia.org/wiki/C_preprocessor

RD3. GCC online documentation http://gcc.gnu.org/onlinedocs/

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 5 of 24

2. OVERVIEW

OCA is a domain specific language (DSL) for classifying, organizing and associating astronomical data

based on their meta-data (FITS keywords). The OCA interpreter is embedded in various applications

(DataOrganizer, ABbuilder, CalSelector, etc.) used to organize data for pipeline processing or for preparing PI

data packages. The OCA rules are normally stored in instrument-specific configuration files which are parsed

and interpreted by the application at run-time.

A typical OCA application operates on two sets of data:

 Raw/Input Files. The files to be classified and organized for pipeline processing or data packing.

 Calibration Files. The files which can be associated to the raw files.

From the OCA point of view, a file is a collection of properties (keyword/value pairs) which refer to an

astronomical file, usually in FITS format. An example OCA file is provided hereafter:

 FILENAME = “/data/raw/file.fits”

 DPR.CATG = “CALIB”

 DPR.TYPE = “BIAS”

 MJD-OBS = 53847.61567130

Normally an OCA file contains a subset of the FITS header keywords, plus additional keywords generated by

the OCA application. Although the OCA language is targeted to astronomical applications and data, its design

is quite generic and it would be also possible to use it in a completely different context.

The OCA grammar was designed having in mind the data acquisition and reduction process.

Calibrations and observations are acquired on the mountain with template files that specify the sequence of

operations to acquire a given type of frame. Those frames are uniquely identified by a set of a few FITS

keywords.

Every type of frame has a corresponding pipeline recipe, capable of reducing such frames and to generate

master calibrations and other products.

The statements of the OCA language are called rules. There are three types of rules:

1. Classification Rules. To classify the input files, i.e. define new properties based on existing ones.

2. Organization Rules. To organize an input data set into homogeneous groups and trigger an action

(association) to be applied to each group.

3. Association/Action Rules. To associate files and other information (recipe, products) to an input data

set (a group created by an organization rule).

A generic OCA application normally implements the following sequence of operations
1
:

1. Parse OCA rules

2. Load and classify input files

3. Load and classify calibration files

4. Organize input files into homogeneous groups (association blocks)

5. Add calibration files and other information to association blocks

6. Save the results in an application-specific format (e.g. Reduction Block file or Association Block file)

The remainder of this document is organized as follows:

 Chapter 3 describes the OCA static structure (syntax) and how rules are evaluated at run-time by the

OCA interpreter

1
 Specific OCA applications can implement a different workflow. For example the Archive Data Organizer implements

only the classification step.

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 6 of 24

 Chapter 4 gives an overview of the main OCA applications

 Chapter 5 describes how the C preprocessor can be used to organize large sets of OCA rules in

smaller and more manageable units

 The remaining chapters (appendixes) provide some examples of OCA rules, Reduction Blocks, etc.

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 7 of 24

3. OCA LANGUAGE

The syntax and semantics of the OCA language are described in the following sub-chapters:

 3.1 File structure

 3.2 Lexical conventions and syntax

 3.3 OCA Rules

3.1 File structure

As shown in Table 1, an OCA script is made of three sections, one for each type of OCA rule:

- Classification rules;

- Organization/Grouping rules;

- Action/Association rules.

OCA Rules

Classification Rules
// line comment

if condition then KEYW.ONE = value;

/*block

Comment */

if condition then { KEYW.ONE = value; KEYW.TWO = value }

if condition then

{

 KEYW.ONE = value;

 KEYW.TWO = value

}

Etc.

Organization/Grouping Rules
// comment

select execute(action) from inputFiles where condition [group by keyword-list];

select execute(action) from inputFiles where condition [group by keyword-list];

Etc.

Action/Association Rules
action action

{

 minRet = value; maxRet = value;

 select file as alias from data-set where condition;

 minRet = value; maxRet = value;

 select file as alias from data-set where condition;

 Etc.

 recipe name { “option1”; “option2”; Etc. };

 product name { KEYW.ONE = value; KEYW.TWO = value };

 product name { KEYW.ONE = value; KEYW.TWO = value };

 Etc.

}

action action

{

 Etc.

}

Table 1 File structure

3.2 Lexical conventions and syntax

3.2.1 Line Structure

Each statement is terminated with a semicolon („;‟).

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 8 of 24

Multiple statements (e.g. action rules) can be enclosed in braces („{„, „}‟). In this case a semicolon is not

needed after the closing bracket.

3.2.2 Comments

Comment operators are used to add notes and documentation to source code. Everything marked as comments

is ignored by the OCA interpreter.

The OCA language has two types of comments: line and block.

A line comment starts with two forward slashes (//) and ends at the end of the line.

A block comment starts with a forward slash and asterisk (/*) and ends with an asterisk and forward slash (*/).

3.2.3 Identifiers, FITS keywords and reserved words

Please note that OCA is a case sensitive language: this feature applies to all the three tokens described in this

chapter.

Identifiers are symbolic names used to identify and cross-reference actions, recipes and products. Identifiers

start with a letter and can include letters, numbers and the underscore („_‟) character. Some examples of

identifiers are:

ACTION_SW_DARK
isaac_img_dark
MASTER_DARK

FITS keywords are used in conditional expressions, assignments and keyword lists. Keywords shall be

written using the short FITS notation
2
, like in the following examples:

INSTRUME
DPR.CATG
MJD-OBS
DET.CHIPS
DET.WIN1.BINX

The following words are reserved and cannot be used as identifier names:

if then or and

like execute select from

where group by minRet

maxRet as recipe product

action file inputFile inputFiles

calibFiles rawFiles is undefined

string integer float boolean

regexp between not

Table 2 : Reserved words

3.2.4 Data Types

The following data types are supported:

2
 In the long FITS notation all keywords are referred to as they are written in the FITS header, in the short FITS notation

hierarchical keywords are modified by removing the leading HIERARCH.ESO., for more detailed information please

refer to http://archive.eso.org/cms/tools-documentation/dicd_v5.pdf

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 9 of 24

 Character string. A character string consists of arbitrary text within double quotes. Leading and

trailing blanks are not significant. The escape character for double quotes is „\‟. The escape sequence

for „\‟ is „\\‟.

 Integer number. An integer consists of a `+' or `-' sign, followed by one or more digits with no

embedded spaces. The leading `+' sign is optional. Leading zeros are permitted, but are not

significant.

 Floating Point Number. A floating point number is represented by a decimal number followed by an

optional exponent, with no embedded spaces. A decimal number consists of a `+' or `-' sign, followed

by a sequence of ASCII digits containing a single decimal point (`.'), representing an integer part and

a fractional part of the floating point number. The leading `+' sign is optional. At least one of the

integer part or fractional part must be present. If the fractional part is present, the decimal point must

also be present. If only the integer part is present, the decimal point may be omitted (in this case the

number will be considered to be an integer, unless it is followed by an exponent and/or one of the

following letters: „f‟, „F‟, „d‟, „D‟). The exponent, if present, consists of the letter „E‟ or „e‟ followed

by an integer.

3.2.5 Operators

The following operators are supported:

Operator Operand Types Description Context Example
and Logical, Logical Logical and Expressions KWD1==2 and KWD2==3

or Logical, Logical Logical or Expressions KWD1==2 or KWD2==3

== Numeric, Numeric

String, String

Equals. Returns true if both

operands are defined and

have the same value

(beware of rounding errors

when comparing floating

point numbers).

Expressions KWD == 1

!= Numeric, Numeric

String, String

Not equals Expressions KWD != 1

?= Numeric, Numeric

String, String

Possibly equals. If both

operands are defined it

behaves as equals,

otherwise it doesn‟t do

anything.

Expressions KWD ?= 1

< Numeric, Numeric Less than Expressions KWD < 5

<= Numeric, Numeric Less than or equal Expressions KWD <= 6

> Numeric, Numeric Greater than Expressions KWD > 5

>= Numeric, Numeric Greater than or equal Expressions KWD >= 5

is undefined Identifier Unary operator. Returns

true if the operand is

undefined.

Expressions KWD is undefined

is TYPE Identifier Unary operator. Returns

true if the operand is of the

given type. TYPE can be

one of the following:

boolean, integer, float,

string.

Expressions KWD is integer

like String, String Can be used to perform

pattern matching. The right

operand is a character

string which may contain

the wildcard character “%”

which matches any string

of zero or more characters.

Expressions KWD like “%DARK%”

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 10 of 24

To match the special

character “%” one may use

“%%”.
regexp String, String Extended pattern matching

functionality using regular

expressions.

Expressions KWD regexp “[A-Za-z]+”

= Identifier, String

Identifier, Numeric

Assignment. Classificatio

n Rules

Product

Definition

Rules.

DO.CATG = “BIAS”

+ Numeric, Numeric Addition Expressions KWD + 3

- Numeric, Numeric Subtraction Expressions KWD1 – KWD2

* Numeric, Numeric Multiplication Expressions KWD*2

/ Numeric, Numeric Division Expressions KWD/2

% Numeric, Numeric Remainder Expressions KWD%10

between Numeric, Numeric,

Numeric

Returns true if the first

operator is greater than the

second and lesser than the

third

Expressions KWD between 5 and 10

not Expression Returns true if the

following expression is

false

Expressions not KWD == 5

Table 3 : Operators

The order of operation (precedence rules) for OCA operators is listed in Table 4. All operators are evaluated

from left to right and are listed in the table from highest to lowest precedence. That is, operators listed first in

the table are evaluated before operators listed after.

Operator Name

x*y, x/y, x%y Multiplication, Division, Remainder

x+y, x-y Addition, Subtraction

x==y, x!=y, x?=y, x<y, x>y, x<=y, x>=y, x like y, x is
undefined, is type, x regexp y, x between y and z

Equals, Not Equals, Possibly Equals, Less Than, Greater

Than, Less Than or Equal, Greater Than or Equal, Like, Is

Undefined, Is Type, Regexp, Between

not expression Logical Not

x and y Logical And

x or y Logical Or

Table 4 : Order of evaluation (highest to lowest)

The natural order in which an expression is evaluated, given by the operators‟ precedence, can be modified

through the use of parentheses.

Example:
DPR.CATG=="CALIB" and DPR.TYPE like "%FLAT%" and (DPR.TECH=="MOS" or DPR.TECH=="IFU")

3.3 OCA Rules

3.3.1 Classification rules

Classification rules are if statements used to define new properties (meta-keywords) of files based on a

conditional expression. The syntax is as follows:

if condition then assignment

Or

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 11 of 24

if condition then { assignments }

Braces must be used to enclose multiple assignments; otherwise they can be omitted in case just one

assignment is defined.

The condition is a Boolean expression where the following syntax elements can be used:

- FITS keywords (e.g. DPR.CATG)

- Literals (strings or numeric values)

- Logical operators (and or)

- Comparison operators (e.g. == >=)

- Arithmetic operators (e.g. + -)

Example:
DPR.CATG == "CALIB" and DPR.TECH == "SPECTRUM" and DPR.TYPE like "%FLAT%" and DPR.TYPE like "%LAMP%"

The assignment is of the form:

Keyword = Value;

Example:
DO.CATG = “SCIENCE”;

Or

Keyword = Expression;

Example:
SECS = (MJD-OBS – 40587) * 86400;

An example of classification rules is shown in Table 5:

if DPR.CATG == "CALIB" and DPR.TYPE == "BIAS" and DET.CHIPS == 1 then

{

 RAW.TYPE = “BIAS”; DO.CATG = “BIAS_BLUE”;

}

if DPR.CATG == "CALIB" and DPR.TYPE == "BIAS" and DET.CHIPS == 2 then

{

 RAW.TYPE = “BIAS”; DO.CATG = “BIAS_RED”;

}

if DPR.CATG == "CALIB" and DPR.TYPE == "FLAT" and DET.CHIPS == 1 then

{

 RAW.TYPE = "FLAT"; DO.CATG = "FLAT_BLUE";

}

if DPR.CATG == "SCIENCE" and DPR.TYPE like "OBJECT%" then DO.CATG = "SCIENCE";

Table 5 Example of classification rules

Note: if the classification tries to overwrite a real FITS keyword, this is instead saved as a metakeyword, and

its value will be ignored by the organization and association rules. Anyway custom application may still take

advantage of this.

3.3.1.1 Evaluation

Given a set of classification rules and a set of files to classify, the OCA interpreter applies all rules to all

files, one file at a time. In this context a file is a set of meta-data, typically corresponding to a FITS header.

For each file the rules are evaluated sequentially in the same order as they appear in the configuration file. For

each file and for each classification rule, the conditional part of the rule is evaluated with the actual keyword

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 12 of 24

values of the file. If the condition evaluates to true, the corresponding assignments are performed and new

(meta-) keywords are added to the file. The new meta-data become immediately available for evaluation of

subsequent rules.

3.3.1.2 Note on the order of classification rules

Depending on the file properties and on the order in which classification rules appear in the configuration file,

it may happen that a classification rule overwrites some meta-data defined by a previous rule. Normally users

want to write rules with more restrictive conditions after less restrictive ones to avoid overwriting meta-data

by mistake.

An example set of files with some properties is given in Table 6:

 DPR.CATG DPR.TYPE DET.CHIPS MJD-OBS

File 1 CALIB BIAS 1 53847.01567130

File 2 CALIB BIAS 1 53847.11567130

File 3 CALIB BIAS 2 53847.21567130

File 4 CALIB BIAS 2 53847.31567130

File 5 CALIB FLAT 1 53847.41567130

File 6 CALIB FLAT 1 53847.51567130

File 7 SCIENCE OBJECT 1 53847.61567130

File 8 SCIENCE OBJECT,GALAXY 1 53847.71567130

File 9 SCIENCE OBJ,GALAXY 1 53847.81567130

Table 6 Set of files

The result of applying the classification rules in Table 5 to the files in Table 6 is shown in Table 7:

 RAW.TYPE DO.CATG

File 1 BIAS BIAS_BLUE

File 2 BIAS BIAS_BLUE

File 3 BIAS BIAS_RED

File 4 BIAS BIAS_RED

File 5 FLAT FLAT_BLUE

File 6 FLAT FLAT_RED

File 7 Undefined SCIENCE

File 8 Undefined SCIENCE

File 9 Undefined SCIENCE

Table 7 : Result of classification

3.3.2 Organization/Grouping rules

Organization rules can be used to 1) organize a data set into homogeneous groups and 2) invoke the

association rules [3.3.3] for each group. Organization rules are written as follows:

[minRet = value;]

select execute(action) from data-set where condition [group by keyword-list];

Value is an integer defining the minimum number of files the group shall contain.

Action is an identifier referring to an action block (see section 3.3.3) where the relevant association rules are

defined.

Data-set is an identifier referring to the collection of files on which the rule should operate. Currently the only

allowed value for data-set is inputFiles.

Condition is a Boolean expression as defined in section 3.3.1.

Keyword-list is a comma separated list of keywords, as in:

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 13 of 24

KEYW.ONE, KEYW.TWO, KEYW.THREE

3.3.2.1 Evaluation

Given a collection of files and a set of organization rules, each rule selects all files for which the condition

evaluates to true. If a group by clause is present, the selected files are divided in sub-groups according to the

value of the group-by keywords; i.e. each group contains files which satisfy the where clause and have the

same values of all keywords defined in the group by clause.

Example:

Given the organization rule:

select execute(action) from inputFiles where DPR.CATG == “CALIB”

group by DPR.TYPE, DET.CHIPS

And the set of files in Table 6, the following groups are created:

Group Files DPR.CATG DPR.TYPE DET.CHIPS

Group 1 File 1 CALIB BIAS 1

File 2

Group 2 File 3 CALIB

BIAS

2

File 4

Group 3 File 5 CALIB FLAT

1

File 6

Table 8 Groups created by grouping rule

For each group defined by the grouping rule, the OCA interpreter performs the following steps:

1. Determine the Exemplar (or Representative) Frame
3
, which is the “oldest” file in the group, i.e. the

one with smallest MJD-OBS value

2. Evaluate the corresponding action rule, i.e. the one referenced by name in the select execute(action)

clause. Association rules are described in next section [3.3.3].

3.3.3 Association/Action rules

Association rules are used to associate the following information to a group of files defined by a grouping

rule:

1. Files. In a typical pipeline processing scenario, some reference files are needed to process a set of raw

data. These files are selected from a calibration database using association rules which define the

criteria to select these files.

2. Recipe and recipe parameters. The name and parameters of the pipeline recipe which should be

used to process the input data.

3. Products and products meta-data. The name and properties of the products which will be generated

by the execution of the pipeline recipe on this block of data. Also called virtual products or future

products because these products don‟t exist at the time of data association.

An action block is opened by the reserved word action followed by an identifier (name) and an open brace

“{“, and is closed by the close brace “}”.

 action name

 {

 File association rules

3
 The properties of the exemplar frame can be referenced in association rules using the prefix inputFile, see example on

3.3.3.1.

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 14 of 24

 Recipe definition rule

 Product definition rules

 }

An action block contains zero or more file association rules, exactly one recipe definition rule and zero or

more product definition rules. The syntax of these rules is described in sections [3.3.3.1], [3.3.3.2] and

[3.3.3.3].

3.3.3.1 File Association Rules

File association rules define the criteria to associate (reference) files to a set (group) of input files. The syntax

of association rules is as follows:

 [minRet = value;] [maxRet = value;]

 select file as alias from data-source where condition;

Where the minRet and maxRet assignments are optional; the default value for both minRet and maxRet is 1.

Association rules are made of the following components:

 Cardinality. Defines the minimum (minRet) and maximum (maxRet) number of files to be returned

by an association rule. If the rule selects less than minRet files, the calling application should raise an

error. If more than maxRet files are selected, only the maxRet files which are closest in time
4
 to the

input file should be returned to the caller. By default an association rule should return exactly one file

(minRet=1; maxRet=1). The default cardinality can be overridden by setting minRet and maxRet

to user defined values, just before the select statement (see syntax below); this value applies only to

the first select clause after the statement. It is not possible to select an unlimited number of files: this

limitation can be overcome specifying a very large maxRet.

 Alias. The alias is used to attach a user defined label to the results returned by an association rule.

This feature is mainly used for logging purposes to track the execution of association rules, please

note that this is not what ends up as DO.CATG.

 Data-source. Associated files are selected among the set of files identified by this tag. Data-source is

just a symbolic name which can refer to different physical implementations (database table, directory

structure, etc.) depending on the context. Valid data sources are rawFiles, inputFiles and

calibFiles: their meaning is application dependent.

 Condition. The condition is a Boolean expression as defined in section 3.3.1, with one important

difference. In this context it is possible to express the condition in terms of properties both of the input

files and of the associated files. When referring to input files
5
, the prefix inputFile. must be used, as

shown in the following example:

select file as MASTER_BIAS from calibFiles where PRO.CATG=="MASTER_BIAS_UVB"

and inputFile.DET.WIN1.BINX==DET.WIN1.BINX and inputFile.DET.WIN1.BINY==DET.WIN1.BINY

The condition inputFile.X==X is satisfied by all files which have the property X defined and with the

same value as property X of the input file.

4
 The closest in time rule is evaluated using the Modified MJD-OBS value of the input files as a reference. The

Modified MJD-OBS value is computed as follows:
MJD-OBSmodified = MJD-OBSexamplar + (Σinput_files EXPTIME) / 2
5
 The input files are actually represented by just one file, which is the exemplar frame defined in 3.3.2.1

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 15 of 24

3.3.3.2 Recipe Definition Rule

This rule is used to define the name and optionally the parameters of the pipeline recipe which should be used

to process the data block consisting of input files plus associated files. The recipe definition rule can be

written in the following format:

 recipe name;

Or

 recipe name { parameters };

Where parameters is a semicolon separated list of character strings, like in the following example:

recipe xsh_scired_slit_offset {

 "--rectify-bin-lambda=0.015"; "--rectify-bin-slit=0.16";

 "--extract-method=LOCALIZATION"; "--mergeord-method=0";

}

Note that it‟s up to the tool whether to use the recipe parameters or not, depending on its purpose.

3.3.3.3 Product Definition Rules

These rules are used to define the properties of the products which will be generated by a successful execution

of the pipeline recipe indicated by the recipe definition rule [3.3.3.2]. At the time of data organization these

products don‟t exist yet, therefore they are called virtual products or future products. The purpose of

declaring in advance which products will be generated by a pipeline execution is to include them (at run-time)

in the reference files database (calibFiles) even if the corresponding data file does not exist yet, in order to

make virtual products available for subsequent (second level) associations. Not all of the OCA applications

support the virtual products feature, in particular this feature is not needed by the CalSelector and in general

by applications only interested in data packing and not in data reduction.

The syntax of the product definition rule is as follows:

 product name { assignments };

Where name is just a label and assignments is a list of meta-keyword definitions which define some important

properties of the product, as in the following examples:

product MASTER_BIAS { PRO.CATG = “MASTER_BIAS”; }

product MASTER_FLAT { PRO.CATG = “MASTER_FLAT”; }

At run-time, a product definition rule creates a new OCA file in memory which inherits all of the properties of

the input (exemplar) frame that triggered this rule, and contains in addition the new properties defined by the

rule (most notably PRO.CATG which is the ESO product category): this (virtual) file can be then used by

other rules to generate new associations.

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 16 of 24

4. OCA APPLICATIONS

This chapter gives an overview of some ESO data organization tools based on the OCA language, please refer

to the application-specific documentation for a more detailed description.

Some applications use dedicated meta-keywords, that might make the rules not compatible across different

applications.

This is not a comprehensive description of the applications‟ behavior: for more information please refer to the

specific user manual.

4.1 ABbuilder

The ABbuilder organizes input data into Association Blocks (an example AB is provided in chapter 8) using a

set of instrument specific OCA rules. The ABbuilder performs the following operations:

1. Load instrument-specific rules. If a syntax error is detected during this phase, ABbuilder reports a

message indicating where the syntax error occurred, and the application terminates.

2. Load and classify all *.fits, *.tfits and *.hdr files in the raw directory (including subdirectories).

3. Load and classify all *.fits, *.tfits and *.hdr files in the calib directory (including subdirectories).

4. If the virtual product directory is specified (option --vcal-dir), load all virtual products (header

files) in this directory.

5. Organize the raw data into Association Blocks using the OCA organization and grouping rules.

6. Apply the association rules to add the following information to each association block:

o Associated calibrations

o Recipe

o Virtual products

7. Save the association blocks in the AB directory

8. If the virtual product directory is specified (option --vcal-dir), save virtual products in this

directory as header files.

Certain OCA meta-keywords have special meaning to the ABbuilder:

 PACK.DIR. The subdirectory of a file in a service mode data package. This meta-keyword is saved

in the Association Block file and then used by the QC Data Packer to prepare the service mode

package.

 PRO.EXT. The file extension of a virtual product. This meta-keyword is defined in the product

definition rules, for example:
product mbias { PRO.CATG="MASTER_BIAS"; PRO.EXT="0001.fits"; }

The ABBuilder has some conventions on alias names in product selection: if it contains MASSOC or

RASSOC the selected files are listed in the AB respectively as MASSOC or RASSOC.

4.2 Data Organiser

The Data Organiser receives raw data files from one or more instruments and generates the appropriate

Reduction Blocks (an example RB is provided in chapter 7) for scheduling. Whilst doing this for a given

instrument, it refers to an instrument-specific rule file and a set of instrument-specific calibration files.

Certain OCA meta-keywords have special meaning to the Data Organiser:

 DO.CATG. The Data Organiser Category of a file. If the rules for an instrument dictate that a given

file should be processed by the instrument's pipeline, this meta-keyword must be set by that

instrument's classification rules. DO.CATG is a required component of the Reduction Block file

format - if no value is set for it, the Data Organiser will continue to work, but subsequent stages of the

pipeline are likely to malfunction. The original Data Organiser sets the DO.CATG of a template file

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 17 of 24

set to the DO.CATG of its final frame. For backward compatibility, OCA-based rules can duplicate

this behavior by referring to the LF.DO.CATG meta-keyword (see next bullet).

 LF.DO.CATG. The Data Organiser Category of the last file in a template. This keyword is set by the

Data Organiser immediately after the classification step of template rule evaluation. The value used is

the DO.CATG of the last frame in the template; the last frame is considered to be the one with the

latest MJD-OBS. Rule files must not set LF.DO.CATG themselves, because its value will be

overwritten by the Data Organiser. The rules should only refer to this keyword during the organisation

and association steps of rule evaluation.

The Data Organiser makes use of the following FITS keywords for all instruments:

 MJD-OBS. The exposure date of the frame in question. This is used to sort an instrument's frames

into chronological order.

 TPL.START. The exposure date of the first frame in a VLT DFS template. Collation of a new

template begins whenever this value changes.

 TPL.NEXP. The total number of exposures in a template. Basic error checking is performed to ensure

that this value is sane, but it is mostly used in logging output.

 TPL.EXPNO. The exposure number of the current frame in a template. Basic error checking is

performed to ensure that this value is sane, but it is mostly used in logging output.

Some instruments require special-case processing, which is controlled using instrument-specific FITS

keywords:

 DET.CHIP1.Y. The CCD ID of a FORS1/FORS2 frame. FORS1 and FORS2 frames are generated

separately for each CCD chip. This keyword is used to determine which template collator and rule

evaluator tasks should process a given frame.

 OCS.CON.QUAD. The CCD ID of a VIMOS frame. VIMOS frames are generated separately for

each CCD chip. This keyword is used to determine which template collator and rule evaluator tasks

should process a given frame.

4.3 Archive Data Organizer

In the contest of the DataTransfer, the Archive Data Organizer classifies incoming data using a set of OCA

rules and generates Transfer Requests containing the following archive-related meta-data:

 TRANSFER.CATG (e.g. “rawfile”).

 TRANSFER.METHOD (e.g. “network”)

 TRANSFER.PRIORITY (e.g. 40)

 COMPRESSION.METHOD (e.g. “unixcompress”)

These meta-keywords define how a file should be transferred from the Observatory to the main archive in

Garching.

4.4 CalSelector

The CalSelector is an archive service used to associate calibration data (raw and reduced) to science data. The

main difference between the CalSelector and other data organization tools like ABbuilder or DataOrganiser is

that the CalSelector operates on the whole ESO archive, which imposes some constraints on how the OCA

rules can be evaluated. Since the FITS keywords of archived files are kept a relational database (more

specifically in instrument specific tables), the CalSelector applies the OCA rules directly on the database after

transforming them to suitable SQL statements.

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 18 of 24

4.5 Gasgano

Gasgano (http://www.eso.org/sci/software/gasgano/) is a tool that help the users of the ESO archive to mange,

organize and reduce astronomic data: since version 2.4 Gasgano uses the OCA rules to classify the FITS files

the user provides. In this case only the classification part of the rules is relevant to the application,

organization and association rules are simply ignored.

http://www.eso.org/sci/software/gasgano/

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 19 of 24

5. USAGE OF C PREPROCESSOR DIRECTIVES IN OCA

RULES

Sometimes OCA rules can be a bit tedious to write, like in the following example:

select file as MASTER_BIAS_VIS from calibFiles where PRO.CATG=="MASTER_BIAS_VIS"

and inputFile.DET.WIN1.BINX==DET.WIN1.BINX and inputFile.DET.WIN1.BINY==DET.WIN1.BINY

and inputFile.DET.WIN1.NX==DET.WIN1.NX and inputFile.DET.WIN1.NY==DET.WIN1.NY

and inputFile.DET.READ.CLOCK==DET.READ.CLOCK and inputFile.DET.CHIP1.ID==DET.CHIP1.ID

and inputFile.SEQ.ARM==SEQ.ARM;

Also, the size of a complete set of OCA rules for a complex
6
 VLT instrument can be significant (e.g. the

XSHOOTER OCA rules are nearly 5000 lines).

The OCA language does not provide any built-in mechanism for organizing large sets of OCA rules into

smaller and more manageable units, but fortunately there are other convenient ways for achieving this goal

without having to expand the scope of the OCA project. We refer in particular to the usage of the C

preprocessor macro definition (#define) and source file inclusion (#include) directives, as shown in the

following example:

File macro.oca

define _m(A) inputFile.A==A

define MATCH1(A) _m(A)

define MATCH2(A,B) _m(A) and _m(B)

define MATCH3(A,B,C) _m(A) and MATCH2(B,C)

define MATCH4(A,B,C,D) _m(A) and MATCH3(B,C,D)

define MATCH5(A,B,C,D,E) _m(A) and MATCH4(B,C,D,E)

define MATCH6(A,B,C,D,E,F) _m(A) and MATCH5(B,C,D,E,F)

define MATCH7(A,B,C,D,E,F,G) _m(A) and MATCH6(B,C,D,E,F,G)

define BINX DET.WIN1.BINX

define BINY DET.WIN1.BINY

define NX DET.WIN1.NX

define NY DET.WIN1.NY

define CLOCK DET.READ.CLOCK

define CHIP DET.CHIP1.ID

define ARM DET.SEQ.ARM

File association.oca
include “macro.oca”

select file as MASTER_BIAS_VIS from calibFiles where PRO.CATG=="MASTER_BIAS_VIS"

and MATCH7(BINX,BINY,NX,NY,CLOCK,CHIP,ARM);

File all.oca

include “classification.oca” // not defined in this example

include “organization.oca” // not defined in this example

include “association.oca”

The final OCA script is obtained simply by invoking the C preprocessor in order to expand the macro

definitions and to resolve the file inclusions. The following command works with the GCC compiler:

gcc -x c -P –E all.oca

6
 In this context the complexity refers to the number of instrumental modes and setups.

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 20 of 24

Please note that the use of macros could lead to unexpected and undesired behavior if a macro makes use of

one of the values defined in one of the preceding macros, e.g.:
#define FILT INS.FILT1.NAME

#define FILT2 INS.FILT2.NAME

Leads to FILT2 being replaced by INS.INS.FILT1.NAME2.NAME, which is clearly not the desired

behavior: such errors usually result in a syntax error in the rules, but they can also be quite tricky to spot.

For an exhaustive description of the C preprocessor and of the GCC compiler, please refer to [RD2] and

[RD3].

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 21 of 24

6. APPENDIX A – OCA RULES EXAMPLE
// subset of rules for ISAAC

// classification

if DPR.CATG like "%CALIB%" and DPR.TECH like "%IMAGE%" and DPR.TECH like "%JITTER%" and DPR.TYPE like

"%STD%" then

{

 DO.CATG = "IM_ZPOINT";

}

if DPR.CATG like "%CALIB%" and DPR.TECH like "%IMAGE%" and DPR.TYPE like "%DARK%" then

{

 DO.CATG = "IM_DARK";

}

if PRO.CATG like "%DETLIN_A%" then

{

 DO.CATG = "DETLIN_A";

}

if PRO.CATG like "%DETLIN_B%" then

{

 DO.CATG = "DETLIN_B";

}

if PRO.CATG like "%DETLIN_C%" then

{

 DO.CATG = "DETLIN_C";

}

if PRO.CATG like "%MASTER_IMG_FLAT%" then

{

 DO.CATG = "MASTER_IMG_FLAT";

}

if PRO.CATG like "%STDSTARS_CATS%" then

{

 DO.CATG = "STDSTARS_CATS";

}

// organization

select execute(isaac_img_dark) from inputFiles where SIG.TEMPLATE == 1 and DO.CATG == "IM_DARK";

select execute(isaac_img_zpoint) from inputFiles where SIG.TEMPLATE == 1 and DO.CATG == "IM_ZPOINT";

// association

action isaac_img_dark

{

recipe isaac_img_dark;

}

action isaac_img_zpoint

{

minRet = 0; maxRet = 1;

select file as STDSTARS_CATS from calibFiles where DO.CATG == "STDSTARS_CATS";

minRet = 0; maxRet = 1;

select file as DETLIN_A from calibFiles where DO.CATG == "DETLIN_A"

 and inputFile.INSTRUME==INSTRUME and inputFile.DET.MODE.NAME==DET.MODE.NAME;

minRet = 0; maxRet = 1;

select file as DETLIN_B from calibFiles where DO.CATG == "DETLIN_B"

 and inputFile.INSTRUME==INSTRUME and inputFile.DET.MODE.NAME==DET.MODE.NAME;

minRet = 0; maxRet = 1;

select file as DETLIN_C from calibFiles where DO.CATG == "DETLIN_C"

 and inputFile.INSTRUME==INSTRUME and inputFile.DET.MODE.NAME==DET.MODE.NAME;

minRet = 0; maxRet = 1;

select file as MASTER_IMG_FLAT from calibFiles where DO.CATG == "MASTER_IMG_FLAT"

 and inputFile.INS.FILT1.ID==INS.FILT1.ID and inputFile.NAXIS1==NAXIS1

 and inputFile.NAXIS2==NAXIS2 and inputFile.INSTRUME==INSTRUME;

recipe isaac_img_zpoint;

}

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 22 of 24

7. APPENDIX B – REDUCTION BLOCK EXAMPLE
recipe: sinfo_rec_pupil

instrument: sinfo

/data_sinfo/lists/reduced_do/2006-05-07/r.SINFO.2006-05-07T21:55:08.427_tpl

{

/diskb/data_sinfo/SegRaw/sinfo/sinfo_rec_pupil_set1/SINFO.2006-05-07T21:55:08.427.fits PUPIL_LAMP

/diskb/data_sinfo/SegRaw/sinfo/sinfo_rec_pupil_set1/SINFO.2006-05-07T21:56:15.880.fits PUPIL_LAMP

}

{

/data_sinfo/calibDB/certif/ins/sinfo/cal/SI_PMPM_K_PUP.fits MASTER_BP_MAP

/data_sinfo/calibDB/certif/ins/sinfo/cal/SI_PMFL_K_PUP.fits MASTER_FLAT_LAMP

/data_sinfo/calibDB/certif/ins/sinfo/cal/FIRST_COLUMN.fits FIRST_COL

/data_sinfo/calibDB/certif/ins/sinfo/cal/SI_PWMP_K_PUP.fits WAVE_MAP

/data_sinfo/calibDB/certif/ins/sinfo/cal/SI_PSLD_K.fits SLITLETS_DISTANCE

/data_sinfo/calibDB/certif/ins/sinfo/cal/SI_PWSP_K_PUP.fits SLIT_POS

/data_sinfo/calibDB/certif/ins/sinfo/cal/SI_PDST_K.fits DISTORTION

}

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 23 of 24

8. APPENDIX C – ASSOCIATION BLOCK EXAMPLE
general information

TOOL_VERSION ABbuilder-1.1.5

CONFIG_VERSION config.createAB_2.4

INSTRUMENT GIRAFFE

DATE 2007-03-18

DPR_CATG CALIB

RAW_TYPE NFLT

RECIPE gimasterflat

DRS_TYPE CON

PACK_DIR FLAT

BATCH_ID CALIB_2007-03-18

AB_NAME GIRAF.2007-03-18T22:23:24.749_tpl.ab

AB_EVENT TPL_A

COMPLETENESS COMPLETE

PROCESS_STATUS SUCCESSFUL

OBS_PROG_ID 60.A-9022(B)

OBS_MODE NONE

OBS_ID 200164184

MJD-OBS 54177.93292534

MJD-OBS_MOD 54177.93326910

PROD_ROOT_NAME r.GIRAF.2007-03-18T22:23:24.749_tpl

LOG_NAME NONE

pipeline product path

PROD_PATH ${DFS_PRODUCT}/NFLT/2007-03-18

raw match key

RAW_MATCH_KEY INS.SLIT.NAME=Argus

RAW_MATCH_KEY INS.EXP.MODE=H379.0

input file(s)

RAWFILE ${DFO_RAW_DIR}/2007-03-18/GIRAF.2007-03-18T22:23:24.749.fits NASMYTH_FLAT

associated raw file(s) (only for SCIENCE; taken from same night only!)

RASSOC NONE

product file(s)

PRODUCTS NONE NONE

associated mcalib file(s), used for processing

MCALIB REAL ${DFO_CAL_DIR}/2007-03-17/GI_MBIA_070317A_1x1.fits MASTER_BIAS GIRAF.2007-03-

18T13:46:46.237_tpl.ab -0.359

MCALIB REAL ${DFO_CAL_DIR}/gen/grating_HR316.tfits GRATING_DATA GEN -9999

MCALIB REAL ${DFO_CAL_DIR}/gen/slit_geometry_Argus_H379.0_o15.tfits SLIT_GEOMETRY_SETUP GEN

-9999

associated mcalib file(s), used for packing

MASSOC NONE 0

parameters for processing

PARAM --bsremove-method=MASTER

PARAM --sloc-noise=5.

defined waitfors (for CONDOR)

WAITFOR NONE

further associated information

FURTHER_PS NONE

FURTHER_GIF NONE

status of AB

TEXEC 783

ESO

OCA User Manual

Doc: VLT-MAN-ESO-19000-4932
Issue: 2.0

Date: 2013-02-20

Page: 24 of 24

AB_STATUS - created by 'createAB' on Tue Mar 27 15:44:28 CEST 2007 by flames1 on

dfo03

AB_STATUS - processed by 'processAB' on Tue Mar 27 15:59:00 CEST 2007 by flames1 on dfo03

========== RB section starts here ==========

RB_CONTENT recipe: gimasterflat

RB_CONTENT

RB_CONTENT instrument: GIRAFFE

RB_CONTENT

RB_CONTENT ${DFS_PRODUCT}/NFLT/2007-03-18/r.GIRAF.2007-03-18T22:23:24.749_tpl

RB_CONTENT

RB_CONTENT {

RB_CONTENT ${DFO_RAW_DIR}/2007-03-18/GIRAF.2007-03-18T22:23:24.749.fits NASMYTH_FLAT

RB_CONTENT }

RB_CONTENT

RB_CONTENT {

RB_CONTENT ${DFO_CAL_DIR}/2007-03-17/GI_MBIA_070317A_1x1.fits MASTER_BIAS

RB_CONTENT ${DFO_CAL_DIR}/gen/grating_HR316.tfits GRATING_DATA

RB_CONTENT ${DFO_CAL_DIR}/gen/slit_geometry_Argus_H379.0_o15.tfits SLIT_GEOMETRY_SETUP

RB_CONTENT }

RB_CONTENT

RB_CONTENT --bsremove-method=MASTER

RB_CONTENT --sloc-noise=5.

RB_CONTENT

========== SOF section starts here ==========

SOF_CONTENT ${DFO_RAW_DIR}/2007-03-18/GIRAF.2007-03-18T22:23:24.749.fits NASMYTH_FLAT RAW

SOF_CONTENT ${DFO_CAL_DIR}/2007-03-17/GI_MBIA_070317A_1x1.fits MASTER_BIAS CALIB

SOF_CONTENT ${DFO_CAL_DIR}/gen/grating_HR316.tfits GRATING_DATA CALIB

SOF_CONTENT ${DFO_CAL_DIR}/gen/slit_geometry_Argus_H379.0_o15.tfits SLIT_GEOMETRY_SETUP CALIB

		2013-02-25T16:01:45+0100
	Accepted by ESO Technical Archive

