A Holistic Study of Supernovae Throughout history, observational supernova studies have focused almost exclusively on their strong optical emission powered by the radioactive decay of Nickel-56. Yet many of the leading breakthroughs in our understanding of supernovae and their progenitors have been enabled by observations at other wavelengths. For example, through the combination of radio, optical, X-ray and gamma-ray observations, we now know that less than 0 .1 percent of all core-collapse supernovae require "central engines" (compact accreting sources) to power associated gamma-ray bursts. As I will discuss, it is the growing sample of radio and X-ray observations of nearby supernovae that are enabling rapid progress in revealing the nature of the GRB-SN connection. The fundamental question at this stage is clearly: which key progenitor property enables such a small fraction of massive star explosions to give rise to relativistic ejecta, and in turn, GRBs? While progenitor mass, metallicity, and binarity are among the most popular explanations, I will discuss how panchromatic observations (radio through gamma-rays) of supernovae and their environments shed light on this puzzle.