Early-type galaxies: the last 10 billion years I review our current understanding of the formation of early-type galaxies (ETGs), in the context of studies that exploit rest-frame UV-optical photometry. I show that, contrary to our classical notion of them being old and passively evolving, ETGs host widespread star formation at late epochs via persistent minor merging, which contributes 20% of their stellar mass at the present day. Similarly, while our traditional view has been that ETGs are remnants of gas-rich major mergers at high redshift, I present empirical evidence that argues against major mergers as the dominant mechanism for the formation of these systems in the early Universe. Notwithstanding their apparent homogeneity today, ETGs are a rather heterogeneous population of galaxies, in which early mass growth was likely driven either by direct accretion (‘cold flows’) or minor mergers at high redshift.