Supernovae und Kosmologie

Bruno Leibundgut European Southern Observatory

30 April 2017

Übersicht

Supernovae

- Supernova Typen
 - Supernovae von Massiven Sternen
 - Thermonukleare Supernovae

Supernova Kosmologie

- Hubble Konstante
- Zeitdilatation
- Expansionsgeschichte

Historische Supernovae

SN 1006 (in Lupus) SN 1054 (Krebs Nebel in Taurus) SN 1181 (in Cassiopeia) De stella nova (Tycho Brahe) 1572 Keplers Supernova 1604 (in Ophiuchus) Cassiopeia A (ungefähr 1680) S Andromeda (SN 1885B)

Vela Supernova Überrest

30 April 2017

SN 1006

Röntgenbild NASA/Chandra

30 April 2017

SN 1054 - Krebsnebel (Messier 1)

• Pulsar

- Neutronenstern
- Synchrotronstrahlung (blau)
- Sternüberreste
 - "Sterninneres"
 - Sauerstoff (grün)
 - Wasserstoff (rot)

HST/Chandra/VLT

Der Röntgenhimmel

30 April 2017

Tycho Brahes SN 1572

30 April 2017

Keplers Supernova 1604

30 April 2017

Cassiopeia A

30 April 2017

Supernovae

- Extrem helle Sternexplosionen
- Wichtig für die Produktion von schweren chemischen Elementen

Supernovae

Periodic table of the elements group period Urknall 18 1 * Ta** Ο. 2 15 17 13 14 16 Н He IIa Va VIa VIIa IIIa IVa 3 4 10 Sterne 2 F C N i Be 0 Ne в 13 15 17 16 14 18 12 3 10 12 4 5 6 7 8 9 11 3 A1 Si C1 Na Ρ Mg S Ar ШЬ IVb VЬ VIb VIIb 🖛 VIIIb -IIЬ Тb 19 23 36 20 21 22 24 25 26 28 29 30 31 32 33 34 35 27 Sc Τi v. Co Ni Zn Ca Cr Mn Fe Cu Ga Ge Se Br Кг As 50 51 52 53 54 45 46 47 48 49 43 44 38 39 40 41 42 5 Rb Y. Xe Sr Zr Nb Mo Τc Ru Sb Rh Pd Aq Cd In Sn Te 55 56 57 72 73 74 75 76 77 78 79 85 80 81 82 86 83 84 6 Cs Ba La Ηf Τa W Re 0s Ir Pt Hq T1 Pb Bi Po At Rn Au 112 113 114 115 116 **** (Uub) (Uut) (Uuq) (Uup) (Uuh) 88 89 104 105 106 107 108 109 110 87 111 118 *** Ra Ac Rf Db Sg Bh Hs Mt Ds Rg (Uuo) 61 62 64 58 59 60 63 65 66 67 68 69 70 71 Supernovae ^s^ece Pr Sm Υb Nd Ρm Eu Gd Er Τm Lu Tb Dy Ho 91 92 93 94 95 97 102 90 96 98 99 100 101 103 actinide series 7 Th Pa П Cf ND Pu Cm Bk Es Fm Md No Am Lr

* Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC).

** Numbering system widely used, especially in the U.S., from the mid-20th century.

*** Discoveries of elements 112–116 and 118 are claimed but not confirmed. Element names and symbols in parentheses are temporarily assigned by IUPAC.

© 2009 Encyclopædia Britannica, Inc.

SN 1993J

SN 1994D

Pete Challis/HST

30 April 2017

Supernova Search

30 April 2017

Supernova Suche

30 April 2017

2006-en	2005-244	2005-01	2005eu	200665		20055.0	hanne	200555	200555	200551	200551	20055	200061	20056
20068	200028	20082	20055	20014	5		ern			2006-1	200013	200011	200011	2005-1
200615	2005-00	2006-0	2005		2006-0	2006.2	200093	20064	2005je	20056	200699	2006gh		200091
2006gh		200600	2006gd			200632		2000112	2006Hz	200011	2006rg	2006/h	200001	
200611	ZUUchni	ZUUEhp	ZUUBhr	ZUUchs	ZUGHT	2006/04	2006/0		2006hx	2005hg	20051a	200615	200519	200612
2006.jf	2006jg	2006.jh	2006j1	2006.j.j	2006jk	2006j#	2006.jn	2006.jp	2006.jq	2006.jr	2006.js	2006.jt	2006.jv	2006.jy
2005ka	2006kb	2006kc	2006kd	2006ki	200684	2006k1	2006km	2006kg	2006kn	2006ks	2006kt	2006ku	2006kw	2006k×
2006kz	20061a	20051b	20061.j	20061k	200611	20061m	20061n	200610	20061p	20061q	2005ir	2006mt	2006mv	2006mz
2006nb	2006nc	2006nd	2006ne	2006nf	-2005ho	2006nh	2006ni	200611	2006nk	2006n1	2006nm	2006nn	2006no	2006np
2006nu	2006nv	2006riw	2006nz	2006oa	2006ob	2006oc	2006od	200600	2006of	200Eog	2006oh	200601	2006o.j	2006ak
2006on	2006on	200600	2006оу	2006р6	2006pd	2006ре	2006pf	2006pg	2006ph	2006p1	2006р.ј	2006pk	2006p1	2006pm
200699	SDS	SII	2006pr	2006ps	2006pt	2006pv	2006ры	2006px	2006ру	2006pz	2006ga	2006qb	2006qc	2006qd

2003aj	0 2003ak	HST04Kur	o HST04Mcg	o HST04Gre	
e	/		-	÷	
2002fw	2002hp	HST040mb *	2002fx	HST05Zwi	
2002kd	D HST04Rak	2002hr	2002kc	2003be	
0	.	0		o	
HST04Sas	HST05Dic	HST05Str	20031v	2003dy	
HST04Haw	HST05Gab	HST04Cay	HST04Yow	HST05Red	
9 HST05Lan	HST04Tha	2 003es	2003bd	o 2003eb	
	•				
@ 2003eg	* HST04Eag	o HST05Spo	,o HST05Fer	*ö HST04Man	
o HSTD5Koe		o ^s .	0	N, E ←	

Supernovae!

Riess et al. 2007

30 April 2017

Supernovae

30 April 2017

30 April 2017

Supernova Beobachtungen

Supernova Klassifikation

Aufgrund der optischen spektroskopischen Erscheinung

Kernkollaps in massiven Sternen

SN II (Wasserstoff H) SN Ib/c (kein H/He) Hypernovae/GRBs

SN Ia (kein H)

log F_{λ} + const

30 April 2017

Type II Supernovae

Supernova Spektroskopie

Typ II

30 April 2017

Supernova Klassifikation

Filippenko 1997

30 April 2017

30 April 2017

Supernovae

- Extrem helle Sternexplosionen
- Wichtig f
 ür die Produktion von schweren chemischen Elementen
- Endprodukt der Sternentwicklung
 - für massive Sterne als Kernkollaps mit nachfolgendem Neutronenstern oder Schwarzem Loch
 - für kleine Sterne in engen Doppelsternsystemen
 - (der Rest der Sterne erlischt langsam)

30 April 2017

Supernova Klassen

Thermonukleare SNe

- Vorgängersterne haben kleine Massen (<8M_☉)
- weit entwickelte Sterne (Weiße Zwerge)
- Explosives C und O Brennen
- Doppelsternsysteme
- Vollständige Zerstörung

Kernkollaps SNe

- Vorgängersterne haben große Massen (>8M_☉)
- große Sternhülle (Kernfusion noch im Gange)
- Brennen wegen der hohen Dichte und Kompression
- Einzelsterne (Doppelsterne f
 ür SNe lb/c)
- Neutronenstern als Überrest

Energie Quellen

Gravitation →Typ II Supernovae

 Kollaps einer Sonnenmasse oder mehr in einen Neutronenstern

George Gamows Bild einer Kernkollaps Supernova

FIGURE 126 An early and a late stage of a supernova explosion.

Struktur eines Vorgängersternes von Kernkollaps Supernovae

30 April 2017

Energie Quellen

- Gravitation → Typ II Supernovae
 - Kollaps einer Sonnenmasse der mehr in einen Neutronenstern
 - →Freisetzung von 10⁴⁶ Joule
 - vor allem Elektron Neutrinos v_e
 - 10⁴⁴ Joule in kinetischer Energy (Expansion der Ejecta)
 - 10⁴² Joule in Strahlung
- Nukleare (Bindungs-)Energie → Typ Ia

 explosives C and O Brennen von etwa einer Sonnemasse
 Freisetzung von 10⁴² Joule

30 April 2017

Radioaktivität

Nickel Isotope und anderer Elemente Umwandlung von γ-Strahlen und Positronen in Wärme und optische Photonen

Supernova Unbekannte

Die Explosionen sind noch nicht vollständig verstanden

- Umkehrung der Implosion bei den Kernkollaps Supernovae
 - Rolle der Neutrinos
 - Magnetfelder
 - Hydrodynamische Instabilitäten
- genaue Verbrennung in den thermonuklearen Supernovae und der Strahlungstransport

Was wir über Typ Ia Supernovae gerne wissen würden?

Was explodiert? Vorgängersterne, Entwicklung zur Explosion Weiße Zwerge(?), mehrere Möglichkeiten

Wie ist die Explosion? Explosionsmechanismus mehrere Möglichkeiten Deflagration, Detonation, verzögerte Detonation, He Detonation, Sternverschmelzung
Was wir über Typ Ia Supernovae gerne wissen würden?

Was bleibt übrig?

- Überreste
 - Tycho Brahes SN
 - Keplers
- Kompakter Überrest
 - keine, Begleitstern?
- Elementenanreicherung

Was wissen wir über Typ Ia Supernovae?

Wo explodieren sie?

- Umgebung (lokal and global)
 - einige mit CSM(?)
 - alle Galaxientypen
 - Abhängig vom Galaxientyp?
- Feedback
 - wenig

Andere Anwendungsmöglichkeiten

- "Leuchttürme"
- Entfernungsindikatoren
 - H₀, kosmologische Parameter
- Chemische Fabriken
 - keine Stauberzeugung

Vorgängersysteme der Typ la Supernovae unbekannt

Vorgängersterne der thermonuklearen Supernovae sind nicht wirklich bekannt

- Weiße Zwerge, aber ...
 - Doppel Weiße Zwerge oder ein Weißer Zwerg mit einem normalen Stern

30 April 2017

Kosmologie mit Supernovae

Entfernungen sind im Universum nur sehr schwer zu messen. Sie sind aber essentiell, um die Expansionsrate und deren Geschichte bestimmen zu können. Typ Ia Supernovae sind ausgezeichnete Entfernungsindikatoren, die im nahen Universum geeicht werden. Typ Ia SNe sind nicht Standardkerzen

Normalisierung der Leuchtkräfte durch die Lichtkurvenform

Leuchtkraft und Lichtkurvenform

30 April 2017

Nickel- und Gesamtmassen

30 April 2017

r-Seminar

30 April 2017

Ein modernes Hubble Diagramm

30 April 2017

Die nahen SNe la

30 April 2017

Hubble Konstante

Hubble Gesetz

$$D = \frac{v}{H_0} = \frac{cz}{H_0}$$

Leuchtkraftentfernung

$$D_L = \sqrt{\frac{L}{4\pi F}}$$

Entfernungsmodul $m - M = 5 \log(D_L) - 5$ Entfernung in Einheiten von 10pc

30 April 2017

Hubble Diagramm

Entfernungsmodul vs. Rotverschiebung $m - M = 5 \log \left(\frac{cz}{H_0}\right) + 25$ $m - M = 5 \log(z) + 5 \log(c) - 5 \log(H_0) + 25$

$$H_0 = cz \cdot 10^{-0.2(m-M)+5}$$

41. Edgar-Lüscher-Seminar

30 April 2017

Eichung der SN la Leuchtkraft

PAST DISTANCE LADDER (100 Mpc)

Kalibrierung der SN absoluten Helligkeit

Distanzleiter

30 April 2017

41. Edgar-Lüscher-Seminar

NEW LADDER (100 Mpc)

30 April 2017

Hubble Konstante

30 April 2017

SN 1995K bei z=0.479

Erste SN des High-z SN Search Teams

7 Mar

Schmidt et al. 1998

(30 Mar) - (7 Mar)

41. Edgar-Lüscher-Seminar

30 April 2017

SN 1995K

"SN 1995K ist die am weiteste entfernte Supernova (ja, der am weitesten entfernte Stern!) der jemals beobachtet wurde."

30 April 2017

Einschub: Zeitdilatation

Vorhersage für ein expandierendes Universum

Uhren im entfernten Universum sollten langsamer laufen Problem: Geeignete 'Uhr' zu finden

Zeitdilatation

Lichtkurven von Typ Ia Supernovae sind homogen

Vergleich einer entfernten (SN 1995K mit z=0.479) mit einer nahen SN Ia sollte den Effekt deutlich zeigen $t_{obs} = (1 + z)t_{rest}$

Zeitdilatation

30 April 2017

Starke Gravitationslinsen

Abell 1689 ACS/HST

30 April 2017

Ein extremes Beispiel

SN Refsdal

- mehrfach abgebildete
 Supernova
- unterschiedliche
 Weglängen der
 einzelnen Bilder
 → Bilder erscheinen
 zu unterschiedlichen
 Zeiten

Supernova Refsdal = Galaxy Cluster MACS J1149.6+2223 Hubble Space Telescope = ACS/WFC = WFC3/IR

NASA and ESA

SN Refsdal

Erschien im November 2014 Galaxienhaufen Rotverschiebung $Z_{cluster} = 0.54$ **SN** Rotverschiebung $z_{SN} = 1.49$

SN Refsdal Nächste "Erscheinung" wurde für Dezember 2015 vorhergesagt

Supernova Refsdal • Galaxy Cluster MACS J1149.5+2223 • HST WFC3 ACS

Erste Typ Ia SN hinter einer Linse (SN iPTF16geu)

30 April 2017

Fundamente der Kosmologie

Gravitationstheorie

– Einsteins Allgemeine Relativitätstheorie

Isotropie

- Es gibt keine bevorzugte Richtung im Universum

Homogeneität

- Es gibt keine bevorzugte Region
- (e.g. es gibt kein Zentrum des Universums)

Anthropisches Prinzip

– Das Universum hat uns erzeugt

30 April 2017

Friedmann Kosmologie

Annahme

ein homogenes und isotropes Universum

Nullgeodesie in der Friedmann-Robertson-Walker Metrik:

$$D_{L} = \frac{(1+z)c}{H_{0}\sqrt{|\Omega_{\kappa}|}} S\left\{ \sqrt{|\Omega_{\kappa}|} \int_{0}^{z} \left[\Omega_{\kappa}(1+z')^{2} + \Omega_{M}(1+z')^{3} + \Omega_{\Lambda} \right]^{-\frac{1}{2}} dz' \right\}$$

$$\Omega_M = \frac{8\pi G}{3H_0^2} \rho_M \qquad \Omega_k = -\frac{kc^2}{R^2 H_0^2} \qquad \Omega_\Lambda = \frac{\Lambda c^2}{3H_0^2}$$

30 April 2017

Spektroskopie der entfernten Typ Ia Supernovae

30 April 2017

Das vollständige Hubble Diagramm

Das SN Hubble Diagramm

30 April 2017

41. Edgar-Lüscher-Seminar

Kosmologische Implikation

30 April 2017

Supernova Kosmologie

30 April 2017
Der Zustandsgleichungsparameter ω

Allgemeine Leuchtkraft Entfernung

$$D_{L} = \frac{(1+z)c}{H_{0}\sqrt{|\Omega_{\kappa}|}} S\left\{\sqrt{|\Omega_{\kappa}|} \int_{0}^{z} \left[\Omega_{\kappa}(1+z')^{2} + \sum_{i}\Omega_{i}(1+z')^{3(1+\omega_{i})}\right]^{-1/2} dz'\right\}$$

- mit $\Omega_{\kappa} = 1 - \sum_{i}\Omega_{i}$ und $\omega_{i} = \frac{p_{i}}{\rho_{i}c^{2}}$

 $ω_M = 0$ (Materie) $ω_R = \frac{1}{3}$ (Strahlung) $ω_\Lambda = -1$ (kosmologische Konstante)

30 April 2017

15 Jahre Fortschritt

30 April 2017

Neuste Messungen

Einstein zur Kosmologischen Konstante

Wir geben hierfür zunächst einen Weg an, der an sich nicht beansprucht, ernst genommen zu werden; er dient nur dazu, das Folgende besser hervortreten zu lassen.

Im folgenden führe ich den Leser auf dem von mir selbst zurückgelegten, etwas indirekten und holperigen Wege, weil ich nur so hoffen kann, daß er dem Endergebnis Interesse entgegenbringe. Ich komme nämlich zu der Meinung, daß die von mir bisher vertretenen Feldgleichungen der Gravitation noch einer kleinen Modifikation be-

sphartsenen naum approximieren, venennane ist diese Handbaug region widerspruchsfrei und vom Standpunkte der allgemeinen Relativitätstheorie die naheliegendste; ob sie, vom Standpunkt des heutigen astronomischen Wissens aus betrachtet, haltbar ist, soll hier nicht untersucht werden. Um zu dieser widerspruchsfreien Auffassung zu gelangen, mußten wir allerdings eine neue, durch unser tatsächliches Wissen von der Gravitation nicht gerechtfertigte Erweiterung der Feldgleichungen der Gravitation einführen. Einstein (1917)

30 April 2017

Der Inhalt des Universums

Dunkle Materie und Dunkle Energie sind die bestimmenden Energiebeiträge des Universums.

Was sind sie?

30 April 2017

Was bedeutet das?

Das Universum besteht im wesentlichen aus nichts.

Das Universum expandiert für immer.
Im Moment existiert keine überzeugende physikalische Interpretation der Vakuumsenergie (Dunkle Energie).
Nur 4% des Universums sind aus demselben "Stoff" wie wir (und alles, das wir kennen).

30 April 2017

Interpretationen/Spekulationen

Einsteins Kosmologische Konstante Bisher kein "Platz" im Standard Model der Teilchenphysik

Quintessence

Quantenmechanisches Teilchenfeld, dass Energie in das Universum entlässt

Anzeichen einer höheren Dimension

Gravitation ist am besten beschrieben in einer Theorie mit mehr als vier Dimensionen

Phantom Energie

Die Dunkle Energie ist so stark, dass das Universum auseinander fällt (Big Rip)

30 April 2017

Zusammenfassung

95% der Energie im Universum unverstanden Baryonische Materie einzige die klumpt
Vergangene Entwicklung des Universums erklärbar

Dynamisches Alter des Universums größer als die ältesten bekannten Objekte

Neue Zweifel ...

Wie konstant sind die Naturkonstanten?

G, α, h, c

30 April 2017