ESO Today and Tomorrow

C Stéphane Guisard

European Southern Observatory

- Mission
 - Develop and operate world-class observing facilities for astronomical research
 - Organize collaborations in astronomy
- Intergovernmental treaty-level organization
 - Founded in 1962, by 5 countries
 - Finland joined in 2004
 - Currently 14 member states
- Observatories in Chile
 - > Optical/infrared: La Silla and Paranal
 - Sub-mm: APEX and ALMA partnerships: Chajnantor

pean Southern Observa

HQ in Garching and Office in Santiago

Tampere, 3 June 2010

ESO's sites

ESO's world

Paranal La Silla Santiago

Earth at Night More information available at: http://antwrp.gsfc.nasa.gov/apod/ap001127.html Astronomy Picture of the Day 2000 November 27 http://antwrp.gsfc.nasa.gov/apod/astropix.html

European Southern Observatory

ching bei München

La Silla Paranal

VLT/I (Paranal)

VCT/OC

Instrumentation operating, in assembly and planned

 Covers the available optical infrared wavelengths 300nm to 20µm

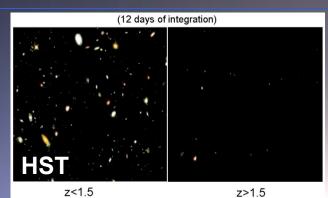
Angular resolution from seeing limit to 50 µ-arcseconds FORS2, ISAAC, UVES, FLAMES, NACC, SINFONI, CRIRES, VISIR, HAWK-I, VIMOS, X-Shooter, laser guide star facility KMOS, MUSE, SPHERE, Adaptive Optics Facility MIDL AMBER, PRIMA GRAVITY MATISSE

Tampere, 3 June 2010

La Silla Paranal

La Silla

Continue operations with long-term programmes
 HARPS, EFOSC2, SOFI, FEROS, WFI, visitor instruments


Covers sub-mm and mm wavelengths 0.3 to 3 mm SHFL Swedish Heterodyne Facility Instrument), LABOCA, SABOCA, APEX-SZ, CHAMP+

+ES+

ALMA

Science requirements
Detect CO and [GII] in Milky Wav galaxy at z=3 in < 24 hr
Dust emission, gas kinematics in proto-planetary disks
Resolution to match Hubble, JWST and 8-10m with AO
Complement to Herschel

 Specifications
 66 antennas (54x12m, 12x7m)
 14 km max baseline (< 10mas)
 30-1000 GHz (10–0.3mm), up to 10 receiver bands

Simulation 3 days of integration 4'x4' arcmin

850 GHz

5AU

E-ELT

Detailed design study
Baseline 42m primary mirror
Adaptive optics built-in
instrument studies and 2 adaptive optics modules studied
Industry strongly engaged
Study complete in 2010

Builds on entire expertise at ESO and in the member states

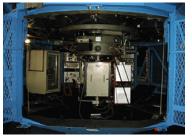
Construction 2011-2018 Synergy: JWST/ALMA/SKA

La Silla

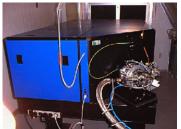
 Medium-size telescopes
 3.6m: HARPS for exo-planet searches
 3.5m NTT: EFOSC2, SOFI & visitor instruments
 2.2m: WFI & FEROS in partnership with MPG

Small telescopes
 Closed/funded externally

La Silla: 5 Operational Instruments



EFOSC2


2.2m

WFI

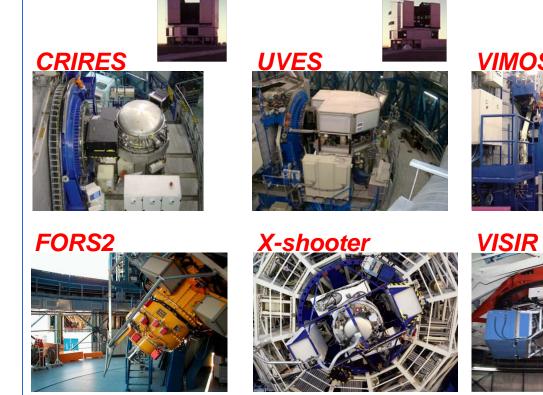
FEROS

GROND

European Southern Observatory

Tampere, 3 June 2010

Paranal



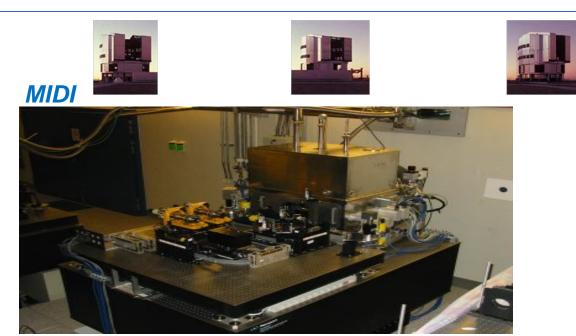
Tampere, 3 June 2010

VLT Instruments

FLAMES

ISAAC

SINFONI


Tampere, 3 June 2010

VLTI Instruments

AMBER

Tampere, 3 June 2010

Monikäyttöiset instrumentit

Teleskoopeilla laaja tieteellinen käyttöalue

- Samoilla instrumenteilla havaitaan oman aurinkokuntamme kohteita, mutta myös maailmankaikkeuden kaukaisimpia kohteita
- Kohteet kuumista kylmiin, tiheistä harvarakenteisisiin
- > Hiukkasten havainnointi ja karakterisointi

Tähtitieteen laboratorio on maailmankaikkeus

Top list of ESO science

- Galactic Centre
 - Supermassive black hole
- Extrasolar planets
 - First images of exo-planets
 - Lightest known planets
 - First direct spectrum of an exo-planet
- Accelerating Universe
 - Spectroscopy of distant supernovae
- Gamma-Ray Bursts/Supernovae
 - Explosion physics
 - Tracers of the distant universe

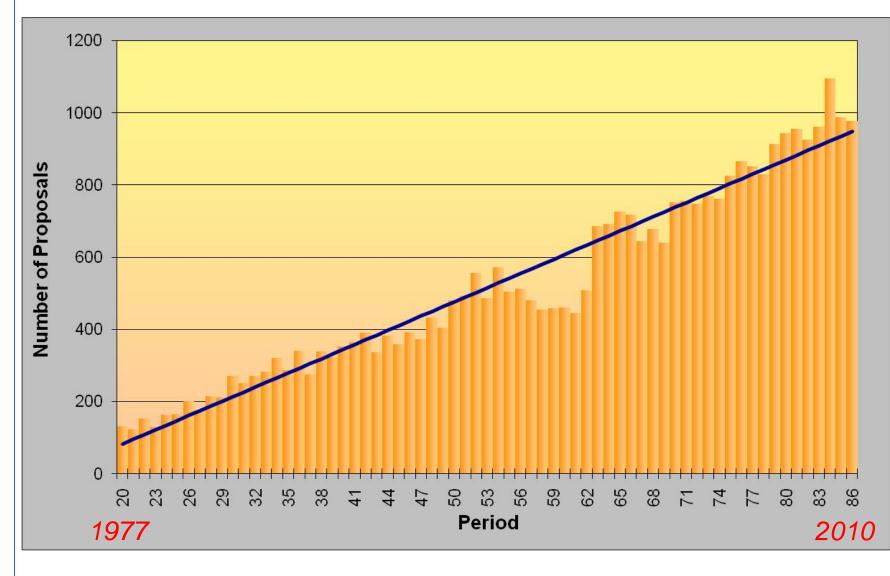
Other top science from ESO

- Metal-poor stars
 - Tracing the chemical enrichment
 - Finding the oldest known stars
- Stellar populations in nearby galaxies
 - Measuring stars beyond the Local Group
- Massive galaxies in the distant Universe
 - Puzzles in galaxy formation
- Varying physical constants?
 - Measure the fine-structure constant over time
- Testing the cosmological model
 - Cosmic background temperature

More top science

Detecting and imaging the tori around AGN

- Measure the geometric shape of stars
- Determine the size of stars
 - E.g. Cepheids to calibrate the period-luminosity relation
- Star formation
 - Debris disks, chemistry in circumstellar disks

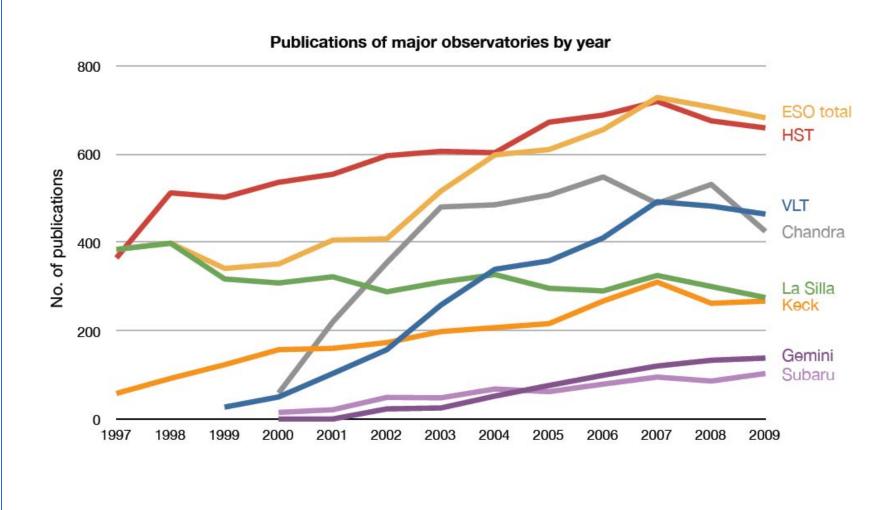

ean Southern Obsei

- Measure the structure of the Milky Way
 - Local spiral arm
 - Bulge, disk and halo, run-away stars
- Solar System objects
 - > Comets, asteroids, weather on Titan

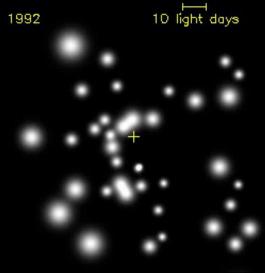
Tampere, 3 June 2010

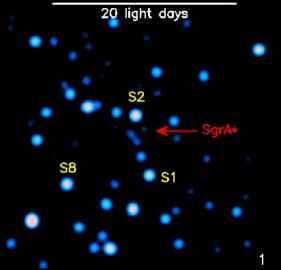
Proposal submission

Tampere, 3 June 2010


ESO Publication Statistics

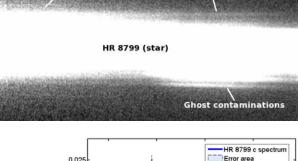
Tampere, 3 June 2010

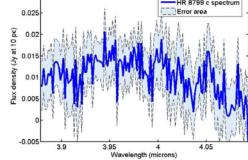



ESO and other Observatories

Black hole at the Galactic Centre

Mass determination through stellar orbits Structure around the black hole revealed through flashes **Coordinated studies** with other wavelengths Multi-year study use of AO instruments (SHARP on NTT, ISAAC NACO, SINFONI on VLT)





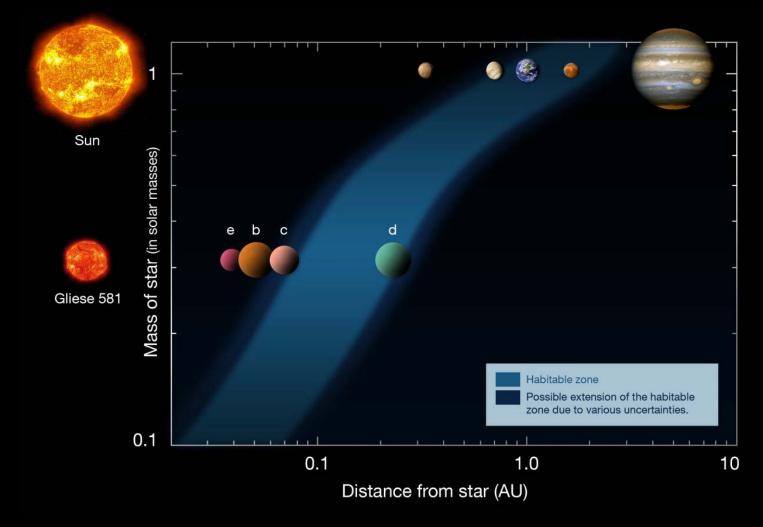
The ESO exo-planet machinery

- HARPS at 3.6m telescope
 - best radial velocity machine at a 4m telescope (supported by UVES on VLT)
 - > extremely stable spectrograph
- NACO
 - adaptive optics supported imaging and spectroscopy
- VLTI
 - highest spatial resolution for followup observations of known systems
- NACO/SINFONI/FORS2

> transit measurements, atmospheres of exo-planets

ESO results on exo-planets

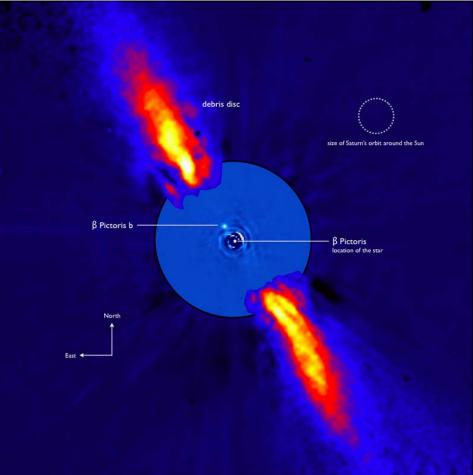
Most radial velocity detections through HARPS


- Iowest-mass planets known so far
 - rocky planets, earth-mass planets
- planetary systems
- First direct image of a planet
 - > around a brown dwarf
 - > now innermost planet directly imaged (β Pic)
- Combination with transits
 - Characterization of planets
 - mass, density, temperatures

+ES+

A planet with $1.9M_{\oplus}$ and one in the habitable zone

Gliese 581



β Pic planet

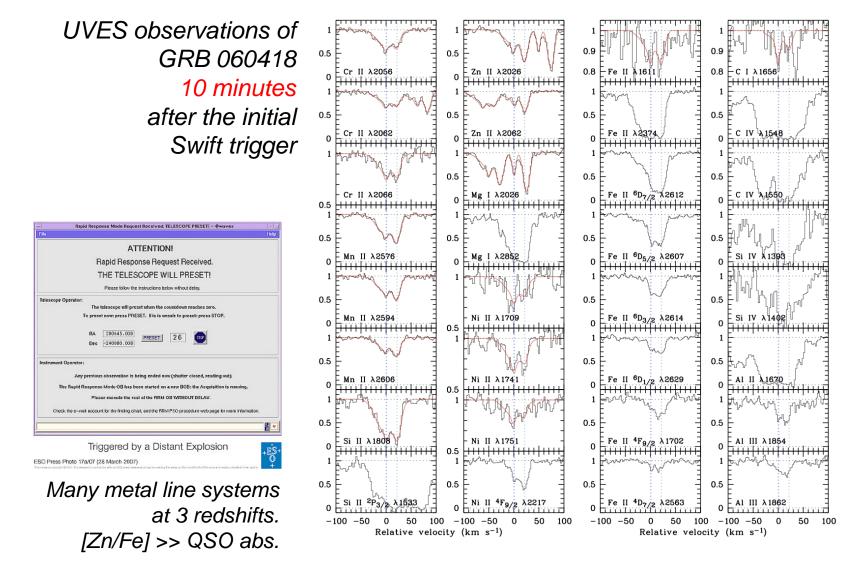
Planet within the massive dust disk

- Orbit only a few AU
- NACO imaging

Lagrange et al. 2009, A&A, 493, L21

Tampere, 3 June 2010

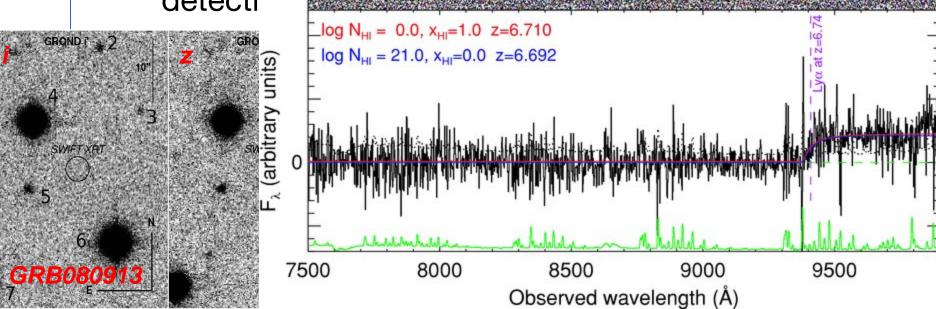
Gamma-Ray Bursts


Identification relies on optical data

- redshifts, explosion energies, explosion physics
- Cosmological probes
 - the most distant observable stars
 - > light houses to measure the intergalactic medium
 - tracers of chemical enrichment?
- Very short duration
 - required special instrumentation and software to observe adequately

Rapid Response Mode (RRM)

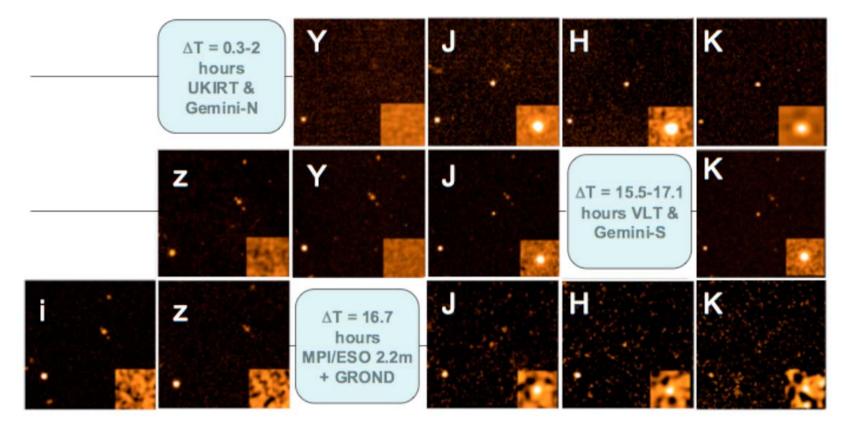
Tampere, 3 June 2010



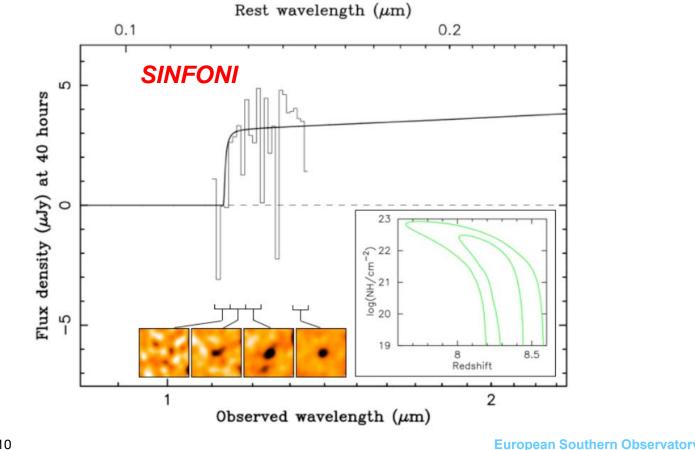
Gamma-Ray Bursts

Most distant stellar objects ever observed

- redshifts 6.7 and 8.2 (tentative)
- Iookback time of nearly 12.5 billion years (or 95% of the age of the universe)
- VLT equipped with rapid response mode



Most distant stellar object yet observed – GRB 090423


Optical drop-out, bright in the near-infrared Rapid decline

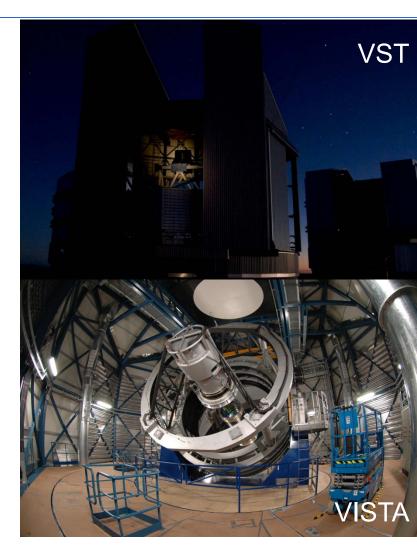
Tanvir et al., Nature submitted

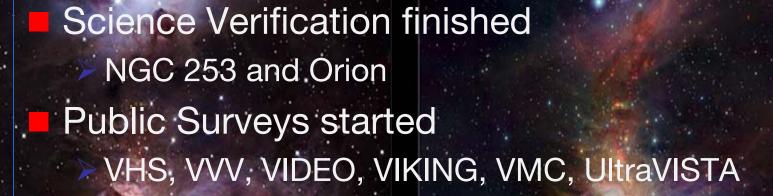
GRB 090423

Spectroscopy 17 hours after outburst Lyman break indicates a redshift of z≈8.2

Tampere, 3 June 2010

The Survey Telescopes


VISTA in operations since April 2010

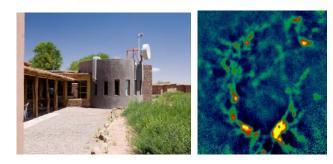

VST still in construction

Expected completion end 2010

Science

- Multi-year program of large public surveys
- Coordinated by ESO
- Develops European survey capability

Chajnantor


APEX

- 12m sub-millimeter antenna, operated by ESO @ Sequitor
- MPG (50%), Sweden (23%) and ESO (27%)

ALMA

- Transformational science
- > 66 antennas at 5050m
- Operations support at 2950m
- Global partnership with North America East Asia & Chile

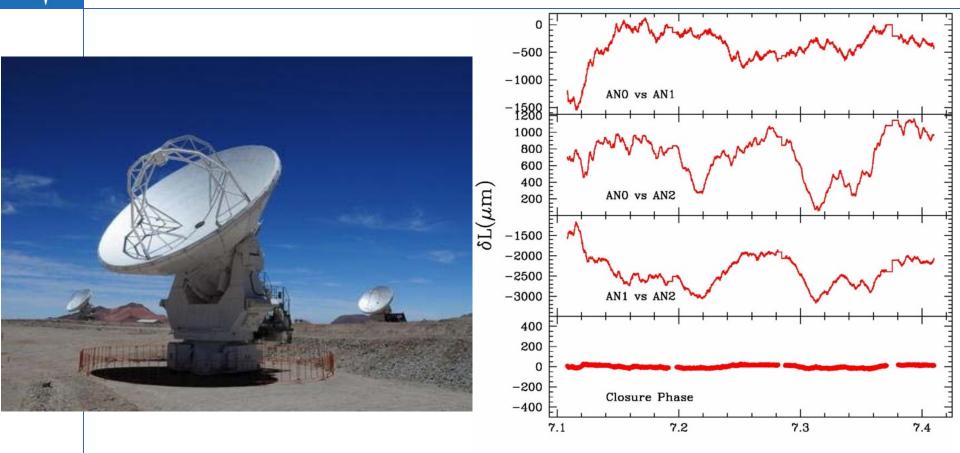
Chajnantor

Three facility and three `PI` instruments on APEX
 Watch out for ALMA

 \geq early science in 2011

➢ be prepared

ALMA


Progress

- > Nearly all European deliverables on track
- Closure phase with three antennas at the AOS
- Santiago Central Office building nearing completion
- Multi-fuel turbine being procured
- First two European antennas mechanically integrated

Concern

> Antenna delivery schedule: under close scrutiny

Closure phase

Time (hrs)

Commissioning and Science Verification started on Jan 22, 2010

Tampere, 3 June 2010

Leonardo Testi: Kiel, May 2010 57 European Southern Observa

ALMA Early Science

- 16 antennas with four frequency bands
- Baselines up to 1 km
- Up to 1/3 of the time used for this
- Call for proposals towards the end of 2010
- Deadline probably around February 2011
- Observations start September 2011

ALMA Band	Frequency Range (GHz)	Wavelength range (mm)
3	84-116	3.6-2.6
6	211-275	1.4-1.1
7	275-373	1.1-0.8
9	602-720	0.5-0.4

ALMA 2013

E-ELT

Design study

- First prototype mirror segments produced
- ESO M1 phasing method tested successfully on GTC
- Instrument studies
 - Final reviews of 8 instrument studies and two adaptive optics modules complete
 - Results and SWG input presented to STC in April
 - Extraordinary STC Meeting on 16 June to discuss the first generation of E-ELT instruments

Site selection

Council selected Armazones as baseline site

Proposing for ESO time

Deadline for P87 proposals: 30 September 2010

ESO Call for Proposals – P86 Proposal Deadline: 31 March 2010, 12:00 noon CEST

+ES+

Structure of the ESO OPC

Observing Programmes Committee

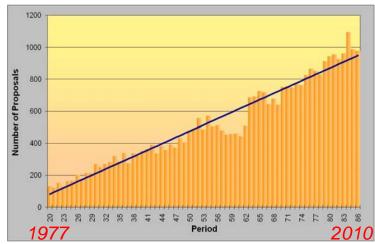
- > 4 scientific categories
 - Cosmology (A)
 - Galaxies and Active Galactic Nuclei (B)
 - Interstellar Medium, Star Formation and Planetary Systems (C)
 - Stellar Evolution (D)
- 13 panels
 - 3 for category A
 - 2 for category B
 - 4 each for categories C and D

Proposal types

- 5 proposal types all handled by OPC
 - normal programmes
 - short programmes
 - Iarge programmes
 - Coordinated VLT/XMM projects
 - Target of Opportunity
 - > calibration programmes
 - all considered by the OPC
- Director Discretionary Time
 - submission any time
 - decided by ESO Director General

ESO proposals

Pressure factor typically high


- > typical oversubscription for ESO telescopes is >3
 - often reaching 5 and in certain periods/RA ranges 8 or higher
- Large Programmes have an acceptance rate of about 20% or less
- Pressure on ToO proposals is extremely high
 - GRBs, supernovae, novae, stellar occultations by TNOs, microlensing,

Finnish proposals

Only few proposals received

- P86: 13 proposals requesting 37 nights
 - FORS2, NACO, VISIR, UVES, X-shooter; SOFI, EFOSC2
- > P85: 13 proposals (1 LP) asking for 40 nights
 - FORS2, SINFONI, NACO; LABOCA, SABOCA, SFHI; HARPS, SOFI, EFOSC2
- 1.3% of the total time requested!
- Success rate fairly high (comparable and/or higher than for other countries)

European Southern Observatory

What makes a proposal successful?

Exciting science

- providing a clear progress in our understanding of some phenomenon
- A neat idea
 - unusual method, new idea, new approach, unique observation or experiment

Clear language

- presentation of an exciting story, which is interesting for many people
- > cover all questions somebody may have
- \geq information to the point

What makes a proposal successful?

- A consistent story
 - > the proposal is complete and provides all information
 - > quantitative arguments for the amount of time requested
- Good Luck!

ESO Archive

The ESO data archive

- \succ is a rich source of excellent data
- > abstracts of previous proposals available
- data public one year after they have been delivered to the PI
- Spreat way to compete with your competitor, if they got observing time
- > easy retrieval and selection of calibration data

Get involved

Participate in OPC

- Participate in other ESO activities
 - > get to know the organisation better
 - active interactions with ESO people
- Have a lively scientific exchange with the (European) astronomical community

European Southern Obsei

- > conferences, workshops
- regularly publish your results

Get involved

Participate in OPC

- Participate in other ESO activities
 - > get to know the organisation better
 - active interactions with ESO people
- Have a lively scientific exchange with the (European) astronomical community

European Southern Obsei

- > conferences, workshops
- regularly publish your results

+ES+

ESO's goals for next five years

Best science from La Silla Paranal Observatory

- Second generation instruments (VLT/VLTI)
- Key surveys with VST and VISTA
- > Long-term programs for unique science on La Silla
- Prepare for ALMA science with APEX
- Deliver ALMA on time and budget
- Design the world-leading E-ELT and secure funding for construction and operations

