Past Supernova Surveys What have we learned?

Bruno Leibundgut

Some past supernova surveys

Historical surveys

Supernova Searches

- Early searches
 - find supernovae!
 - Zwicky, Asiago, Zimmerwald, Rev. Evans
- Targeted searches
 - Hubble diagram → Hubble constant
 - Las Campanas, Calán-Tololo, Berkeley automated search, SN Factory
 - Distant supernovae → decelaration
 - Danish Search, SCP, High-z SN Search Team, SNLS, ESSENCE, SDSS
- Nearby robotic searches
 - SN physics
 - SN rates
 - LOSS, CHASE

Lick Observatory Supernova Search

Supernova Searches

- 'Indiscriminant' searches
 - sky monitoring
 - as opposed to galaxy monitoring
 - → several new SN classes
 - ROTSE-III, QUEST, Catalina Ridge, ASASSN, (i)PTF, PanSTARRS-1, ZTF, LSST
 - special monitoring
 - LMC/OGLE
 - VVV, UltraVISTA, VIDEO, VEILS → no results so far
 - planet transit projects, e.g. WASP, HAT, NGTS
- Special projects
 - search in special regions
 - IR search in star formation region → CC rates
 - $-\nu$ and gravitational wave searches

Do we find all nearby SNe?

- Searching the local volume
 - requires all-sky searches

Nearby supernovae

Decline after 2010

Nearby Supernovae

As distances

Do we find all nearby SNe?

Synoptic Programs

- Follow-up
 - SN physics
 - CfA, CSP, PESSTO
 - light curves, spectral series
- Search for progenitors
 - Imaging of nearby explosion sites
 - HST, AO supported (Smartt, van Dyk)
 - Radial velocity survey
 - Supernova Progenitor surveY (SPY; VLT/UVES), SDSS

Supernova Progenitor surveY

 644 DA white dwarfs checked for radial velocity changes → search close binaries

are there double degenerate white dwarfs in the solar neighbourhood?

discovered ~35double degeneratesystems

Napiwotzki et al. 2007 Geier et al. 2010

SPY

Example of the double-lined
 WDs

relative flux

Napiwotzki et al., in prep.

Future surveys

- Several searches/surveys continue:
 - Amateurs, LOSS, CfA, CHASE, New surveys
 - SkyMapper
 - GAIA transient sources
 - Dark Energy Survey
 - Zwicky Transient Factory
 - Avishay Gal-Yam
 - LSST
 - Melissa Graham
 - EUCLID
 - DESIRE → Astier et al. 2014
 - WFIRST
 - Ryan Foley et al.; Saul Perlmutter et al.

Cosmology - do we need more?

- Already in hand
 - ->1000 SNe la for cosmology
 - constant ω determined to 5%
 - accuracy dominated by systematic effects
 - reddening, correlations, local field, evolution
- Test for variable ω
 - required accuracy ~2% in individual distances
 - can SNe Ia provide this?
 - can the systematics be reduced to this level?
 - homogeneous photometry?
 - further parameters (e.g. host galaxy mass, metalicity)

More supernovae

- Increase the number of interesting supernovae
 - many more general searches
 - remove paradigms
 - possible through the technological progress
 - detectors, data storage, data handling and processing
 - Need to keep the overview
 - Need to keep the focus on science results
- Improved understanding
 - hints on explosion physics
 - statistical samples → rare objects

Supernovae at ESO

- Many long-term programs
 - Large Programs before 2010
 - Danziger, Turatto, Benetti
 - PESSTO (survey) → SOXS in the future
 - spectroscopic follow-up with NTT/EFOSC2/SOFI
 - focussed on special objects
 - superluminous SNe, etc.
 - Spectropolarimetry
 - Patat, Maund, Baade, Spyromilio
 - SN 1987A
 - nearly unbroken spectroscopic record
 - Monitoring of old supernovae

Supernovae at ESO

- Searches
 - mostly attached to survey programs
 - UltraVISTA, VVV, VIDEO
 - no results presented so far
 - VEILS
 - dedicated IR search in connection with DES
 - starts next year
 - SUDARE
 - rates as a function of redshifts

The promise of the (near-)infrared

- Extinction is much reduced in the near-IR
 - $-A_H/A_V \approx 0.19$ (Cardelli et al. 1989)
- SNe la much better behaved

Others find this too

 Light curves in the near-IR very uniform at peak, but large differences at later times

At least around maximum

- Scatter minimal at first maximum in Y (1.04μm), J (1.24μm), H (163μm) and K (2.14μm)
- ~90 objects in J and H
 70 in Y, 20 in K
- Mostly Carnegie SN
 Project data (Contreras et al. 2010, Stritzinger et al. 2011)

Dhawan et al. 2015

Filter	Opt. Phase	sigma	Phase range	sample
Y	-4.4	0.15	-4+1	CSP
J	-3.6	0.16	-4 - +3	CSP
H	-5.1	0.17	-5-+1	CSP
J	-3.8	0.17	-6 - +1	non-CSP
H	-4.7	0.14	-7 - +2	non-CSP

NOT after maximum

Other light curve parameters

Late decline (t>40 days)

Correlations

- IR properties correlate with optical decline rate
- Phase of secondary maximum strongly correlated Δm₁₅

Biscardi et al. 2012

Correlations

- Second maximum
 - phase strongly correlated with Δm₁₅
 - strength only weakly correlated

Dhawan et al. 2015

Consistent picture emerging

- Second peak in the near-IR is the result of the recombination of Fe⁺⁺ to Fe⁺ (Kasen 2006)
- The ejecta structure rather uniform
 - late declines very similar
- higher luminosity indicates a higher Ni mass
- later secondary peak also indicated higher Ni mass
- Ni mass and (optical) light curve parameters correlate (Scalzo et al. 2014)

Luminosity function of SNe la

- Use the phase of the second maximum to derive the bolometric peak luminosity
 - calibrated on a sample of reddening-free SNe Ia
 - apply to reddened objects

Luminosity function of SNe la

$M_{\rm Ni}$ (inferred)	σ	Method	Reference
0.62	0.13	γ ray lines	Churazov et al. (2014)
0.56	0.10	γ ray lines	Diehl et al. (2015)
0.37		Bolometric light curve $A_V = 1.7$ mag	Churazov et al. (2014), Margutti et al. (2014)
0.77		Bolometric light curve $A_V = 2.5 \text{ mag}$	Churazov et al. (2014), Goobar et al. (2014)
0.64	0.13	NIR second maximum	this work (combined fit)
0.60	0.10	NIR second maximum + measured rise	this work

- SN 2014J test passed
- Potential to determine the luminosity function and Ni distribution

Fast-declining SNe la

- Two groups?
 - separation in
 - bolometric luminosity
 - phase of NIR first peak
 - lack of second second NIR maximum
 - → Suhail Dhawan's talk next week

Dhawan et al., in prep

SNe and EUCLID

- DESIRE special SN project as extension of the EUCLID mission
 - Astier et al. 2015
 - SNe Ia with 0.8<z<1.5
- Alternative
 - use EUCLID Deep Fields
 - NIR light curves (only few points)
 - construct NIR Hubble diagram to z<0.8

SNe and EUCLID

- Shadow the EUCLID deep fields at optical wavelengths
 - high cadence (every night?)
 - provide accurate optical light curves
 - important for phase information
 - compare optical and NIR Hubble diagrams
 - tests systematics
 - reddening