Supernova cosmology: legacy and future

Bruno Leibundgut ESO

Congratulations!

"for the discovery of the accelerating expansion of the Universe through observations of distant supernovae"

Supernova Cosmology

- Required observations
 - light curve
 - spectroscopic classification
 - redshift
- Required theory
 - cosmological model
 - (supernova explosions and light emission)
- Required phenomenology
 - calibrations (photometric systems)
 - normalisations (light curve fitters)

Required observations

Light curves

Required observations

 Spectroscopic classification

Required observations

Redshifts

Supernova Cosmology

Published data sets as of January 2011

A more recent Hubble diagram

Cosmological model

Theory of Gravity

Cosmological model

- Assume isotropy and homology
 - → Friedmann-Lemaître model
- for an example of a model-independent interpretation see Sandra Benitez-Herrera's talk

et voilà ...

10 years of progress

Required phenomenology

- photometric calibration
 - see Marek Kowalski's talk

Goobar & Leibundgut 2011

- normalisation
 - ("standardisable candle";"standard crayon")
 - different light curve fitters
 - Δm₁₅,SALT, SiFTO, MLCS

Required phenomenology

- Checks
 - selection effects? evolution?

Systematics

- Current questions
 - calibration
 - restframe UV flux
 - redshifted into the observable window
 - reddening and absorption
 - detect absorption
 - through colours or spectroscopic indicators
 - correct for absorption
 - knowledge of absorption law
 - light curve fitters
 - selection bias
 - sampling of different populations
 - gravitational lensing
 - brightness evolution

Supernova cosmology

- ω firmly established
 - general agreement between different experiments

$N_{ m SN}$	Ω_M (flat)	w (constant, flat)	Light-curve fitter	Reference
115	$0.263^{+0.042}_{-0.042}^{+0.032}_{-0.042}$	$-1.023^{+0.090}_{-0.090}^{+0.054}_{-0.090}$	SALT	Astier et al. 2006
162	0.267 ^{+0.028} _{-0.018}	$-1.069^{+0.091}_{-0.093}^{+0.13}_{-0.13}$	MLCS2k2	Wood-Vasey et al. 2007
178	0.288+0.029 0.219	$-0.958^{+0.088}_{-0.090}^{+0.13}_{-0.13}$	SALT2	
288	0.307+0.019 +0.023 -0.019 -0.023	$-0.76^{+0.07}_{-0.07}^{+0.11}_{-0.11}$	MLCS2k2	Kessler et al. 2009
288	0.265 ^{+0.016} +0.025 -0.016 -0.025	$-0.96^{+0.06}_{-0.06}^{+0.13}_{-0.13}$	SALT2	
557	$0.279^{+0.017}_{-0.016}$	$-0.997^{+0.050}_{-0.054}^{+0.077}_{-0.082}$	SALT2	Amanullah et al.
580	$0.271^{+0.014}_{-0.014}$	$-1.013^{+0.068}_{-0.073}$	SALT2	Suzuki et al. 2011

What next?

- Already in hand
 - ->1000 SNe la for cosmology
 - constant ω determined to 5%
 - accuracy dominated by systematic effects
- Missing
 - good data at z>1
 - · light curves and spectra
 - good infrared data at z>0.5
 - cover the restframe B and V filters
 - move towards longer wavelengths to reduce absorption effects
 - I-band Hubble diagram
 - · Freedman et al.
 - Nobili et al.

I-band Hubble diagram

Currently only 35
 SNe Ia

Supernova Cosmology – do we need more?

- Test for variable ω
 - required accuracy ~2% in *individual* distances
 - can SNe Ia provide this?
 - can the systematics be reduced to this level?
 - homogeneous photometry?
 - further parameters (e.g. host galaxy metalicity)
 - handle >100000 SNe la per year?

Euclid

- 3000 SNe Ia to z<1.2 with IR light curves (deep fields) → I-band Hubble diagram
- 16000 SNe discovered

Cosmology – more?

Distant SNe with CANDELS and CLASH

Multi-cycle HST Treasury Programs

Pls: S. Faber/H. Fergusson

PI: M. Postman

HST MCT SN Survey

PI: A. Riess

SN discoveries and target-of-opportunity follow-up SNe Ia out to z≈2

Determine the SN rate at z>1 and constrain the progenitor systems

SN rates and what they can tell us

SNe at z>1

First SN Ia at z=1.55 "Primo"

Discovery

Light curve

WFC3 IR light curves

Spectroscopy

- VLT spectrum of host galaxy
 - X-shooter (Frederiksen et al., in prep.)

Spectroscopy

SN spectroscopy with ACS grism

Predicting the future ...

- What will we know about supernovae 10 years from now?
 - ~5400 SNe reported until end of 2009
 - expect up to 100000 SNe (?) for the coming decade
 - PanSTARRS, PTF/PTF2, **LSST**

Summary

- Concentrate on λ not covered so far
 - particular IR is interesting
 - reduced effect of reddening
 - better behaviour of SNe Ia(?)
- Understand the SN zoo
 - many (subtle?) differences observed in recent samples (PanSTARRS and PTF)
 - subluminous and superluminous
 - see S. Taubenberger's poster for a prominent example (SN 2009dc)
 - understand potential evolutionary effects
 - spectroscopy important → PESSTO
 - DES?, LSST?, Euclid follow-up?