

Future Strategies for OIR Astronomy

Bruno Leibundgut (ESO)

OIR Astronomy

- Part of the multi-wavelength universe
 - > central region for many processes

new astronomical source, whether discovered by radio telescopes on the ground or by infrared, ultraviolet, X-ray, or gamma-ray telescopes in space, must be observed by ground-based OIR telescopes to understand its physical nature and significance.

McCray et al. 1995

A Strategy for Ground-Based Optical and Infrared Astronomy

Bright Present and Future

A plethora of facilities

- Optical-Infrared ground-based telescopes up to 40m aperture
 - surveys, interferometry, synoptic programmes
- > mm and sub-mm telescopes
 - ALMA, NOEMA, SMA, APEX, Planck, Herschel, SOFIA
- Radio telescopes of all sizes covering many frequencies
- Space-based telescopes
 - Gaia, HST, JWST, Euclid, WFIRST-AFTA
 - Spitzer, Kepler, CoRoT, Cheops, TESS, PLATO, SVOM, ...
- > X-ray sky available through
 - XMM/Newton, Chandra, eROSITA and Athena
- Gamma-ray sky
 - INTEGRAL, MAGIC, HESS, CTA

Major Science Topics

Nature of Gravity

- ➤ strong gravity → Galactic Centre
- ➤ weak gravity → Dark Matter, Dark Energy

Stars and Galaxies

> formation, evolution, baryon cycle

Other Worlds

characterisation of exo-planets and exo-planetary systems

Transient Sky

- variability as signature of physical processes
- discovery enabled through many (near-)all-sky surveys

European Science Vision (2007)

- How do stars form?
- Do we understand stellar structure and evolution?
- What is the life-cycle of the interstellar matter and stars?
- How do planetary systems form and evolve?
- What is the diversity of planetary systems in the Galaxy?
- How did the Universe begin?
- What is Dark Matter and Dark Energy?
- Can we observe strong gravity in action?
- How do supernovae and gamma-ray bursts work?
- How do black hole accretion, jets and outflows work?
- What do we learn from energetic radiation and particles?
- How did the Universe emerge from its Dark Ages?
- Where are most of the metals throughout cosmic time?
- How were galaxies assembled?
- How did our Galaxy form?

European Science Vision (2007)

Changes from 1995

- How do stars form?
- Do we understand stellar structure and evolution?
- What is the life-cycle of the interstellar matter and stars?
- How do planetary systems form and evolve?
- What is the diversity of planetary systems in the Galaxy?
- How did the Universe begin?
- What is Dark Matter and Dark Energy?
- Can we observe strong gravity in action?
- How do supernovae and gamma-ray bursts work?
- How do black hole accretion, jets and outflows work?
- What do we learn from energetic radiation and particles?
- How did the Universe emerge from its Dark Ages?
- Where are most of the metals throughout cosmic time?
- How were galaxies assembled?
- How did our Galaxy form?

OIR in the 2020s

- Exquisite angular resolution
 - > 40m telescopes, interferometry
- Deep (all-)sky information
 - LSST and Euclid
- Deep infrared observations possible
 - > JWST
- Dynamic Milky Way and Local Group
 - Gaia and spectroscopy

OIR in the 2020s

- Thousand of planet candidates
 - > Transient searches
 - WASP, HAT, CoRoT, Kepler, NGTS, Cheops, PLATO
- System to follow-up alerts from other wavelengths and messengers
 - Optical surveys
 - Pan-STARRS, Zwicky Transient Factory, LSST
 - > X-rays, radio
 - Gravitational waves and neutrinos

Transients in the 2020s

Planets in the 2020s

- Complementarity of the different methods
 - > radial velocities, direct imaging, transits
 - needed for full characterisation of masses, densities, atmospheres, formation scenarii
 - Cheops, PLATO, HARPS, ESPRESSO, NIR spectrograph
- Coordination of the different facilities will be essential

Strategic Changes

- Move towards a systems approach
 - Big problems need coordinated observations
 - Milky Way dynamics
 - → Gaia astrometry plus velocities and abundances
 - Cosmology
 - → EUCLID and redshifts
 - Particle Physics
 - → messengers and electromagnetic follow-up
 - Several astrophysical problems need observations across the electromagnetic spectrum
 - High-energy astrophysics
 - Complex astrophysical sites
 - → e.g. star formation regions, SN remnants, galaxy clusters, distant universe

Future Strategies

- Facilities are part of observational system
 - Ground-space coordination (next talk)
 - Coordinated observations at many telescopes
 - Multi-wavelength programmes
 - ALMA optical synergies
 - » star/planet formation, distant universe
 - radio optical synergies
 - » non-thermal and thermal universe
 - Exo-planet search and characterisation
 - timed photometry, spectroscopic monitoring,
 multi-wavelength observations (planet-star contrast!)
 - Milky Way structure and local dwarf galaxies
 - spectroscopic follow-up of the photometric catalogues (SDSS, Gaia)

Future Strategies

- "Guidelines" for OIR observatories
 - > Flexibility
 - adapt to new topics and discoveries
 - Uniqueness
 - explore features of your observatory others don't have
 - e.g. interferometry (VLTI)
 - provide unique capabilities for simultaneous coverage of large wavelength ranges
 - e.g. observations of Comet Shoemaker-Levy 9 or Hale-Bopp
 - Complementarity
 - spectral follow-up of imaging surveys
 - monitoring of special objects
 - complementarity to space missions
 - Supplementarity
 - support observations for other facilities

Future Strategies

- "Internet Astrophysics"
 - Most research based on databases
 - Coordinated programmes produce coherent data
 - Context for many new observations
 - Open Data proven to be key to success
 - SDSS, 2MASS/DENIS, Kepler, eventually LSST
 - observatory data archives
- → Make data available to the whole community
 - Easy to find
 - Easy to understand
 - Easy to use

OIR Observational System of the 2020s

- Flagship facilities
 - > ALMA, ELTs, JWST, LSST, EUCLID, (SKA, ATHENA)
- Archives
 - ➤ Planck, Gaia, HST, Spitzer, Herschel, Kepler, XMM-Newton, INTEGRAL, Chandra, observatory archives
 - Literature
- General user facilities (with some specialisation?)
 - > 6-10m telescopes (16 ground-based)
 - "people's observatories"
 - large variety of instrumentation, also interferometry
 - built-in flexibility
 - main resource for follow-up work
 - > 2-4m telescopes
 - pick your specialisation
 - dedicate telescope to specific science question

ESO – an integrated system

ALMA and E-ELT

Flagship facilities

VLT

- Unique capabilities
 - interferometry → VLTI special session on Friday
 - large instrument complement, flexibility, modern operations model

La Silla/4m telescopes

Transients: NTT; exo-planets: 3.6m; multi-object spectroscopy: VISTA; platform for smaller experiments: La Silla

ESO Archive

- Rich resource of optical data
 - large coherent data sets from surveys
 - advanced data products

Recently in another community ...

Part of ESO's mission is to organize collaborations; its instruments are developed in a coordinated way, with most built by consortia of institutes. ESO has a suite of smaller telescopes as well, which are mostly run by ESO member consortia. The ESO community has thus maximized its combined resources by having a strong support network of partnerships for instrument development and small and medium telescope operations, with ESO concentrating on operating and upgrading the largest facilities. The E-ELT, a planned 39-meter telescope, is expected to have first light in the early 2020s.

Optimizing the U.S. Ground-Based Optical and Infrared Astronomy System

Committee on a Strategy to Optimize the U.S. Optical and Infrared System in the Era of the Large Synoptic Survey Telescope (LSST)

Astronomy in the 2020s

- OIR sky measured to ~25 mag
- Thousands of transient alerts per day
- Matching capabilities at (almost) all other wavelengths
 - angular resolution
 - > sensitivity
 - > sky coverage
- Astroparticle detections
- Diverse astronomical community with considerable overlap with other sciences (chemistry, biology)

OIR Future Strategies

Flexibility

- Astrophysics covers many topics and techniques
- Completeness of instrumentation
- Reaction to interesting new events, object and topics

Coordination

- Instrumentations programmes at different facilities
 - either through a large pool or through collaboration between observatories
- Planning between ground and space
- > Time allocation between observatories

Operations

- > inbuilt flexibility
- ➤ archive → open distribution of data

