What are Type Ia Supernovae?

Bruno Leibundgut

The SN la variety

What is a SN Ia?

Table 1 Classification Criteria for SNe Iax

SN Class	Has Hydrogen?	$ v \lesssim 8000 \ \mathrm{km \ s^{-1}}$?	Low L for LC Shape	Spec. like SN 2002cs
SN Iax	N	Y	Y	Y
SN II	Y	Some	N/A	N
SN Ib/c	N	N	Y	N
SLSN I	N	Y	N	N
Normal SN Ia	N	N	N	N
Super-Chandra	N	Y	N	N
SN 1991T	N	N	N	Somewhat
SN 1991bg	N	N	N	N
SN 2000cx	N	N	Y	N
SN 2002bj	N	Y	N	Somewhat
SN 2002es	N	Y	Y	Somewhat
SN 2002ic	Y	N	N	N
SN 2005E	N	Y	Y	N
SN 2006bt	N	N	Y	N
SN 2010X	N	N	Y	N
PTF 09dav	Y	Y	Y	Somewhat

Foley et al. 2013

Progenitors

Direct detection

- white dwarfs about 30 magnitudes fainter than supernova → direct detection unlikely
- look for companions (binaries!)
- possible detection for a SN lax

Search for double degenerate systems - SPY

Supernova Progenitor surveY – SPY

search for rapid radial velocity changes

 high-resolution spectroscopy (UVES)

- random phase observations
 - at least two phases with $\Delta t > 1 \ day$
- 35 new DDs discovered
- complete sample
 - 20 double lined
 - 19 single lined

Napiwotzki et al., submitted

Supernova Progenitor surveY

644 DA white dwarfs checked for radial

velocity changes

are there double
 degenerate white
 dwarfs in the solar
 neighbourhood?

Napiwotzki et al. 2007

Geier et al. 2010

SPY results

Several massive DDs approaching M_{Chand}

Napiwotzki et al. 2017

Separate analysis

Rate analysis based on the SPY data

- Maoz & Hallakoun 2016 (arXiv:1609.02156)
- merger rate

$$R_{merge} = (7.3 \pm 2.7) \cdot 10^{-13} \ yr^{-1} \ M_{\odot}^{-1}$$

Range:
$$1.4 \cdot 10^{-13} < R_{merge} < 1.3 \cdot 10^{-11} \ yr^{-1} M_{\odot}^{-1} \ (2\sigma)$$

 compares well with the estimated la rate in the Milky Way

$$R_{Ia} \approx 1.1 \cdot 10^{-13} \ yr^{-1} \ M_{\odot}^{-1}$$

 together with dropping the Chandrasekharmass limit → could be enough doubledegenerate systems to explain most SNe Ia

Type la Supernovae

Variations on a theme

- critical parameters?
 - nickel mass
 - ejecta mass
 - explosion energy(?)
 - explosion mechanism?
 - progenitor evolution?

Radioactivity

Isotopes of Ni and other elements

conversion of γrays and
positrons into
heat and optical
photons

Ejecta masses

Large range in nickel and ejecta masses

- no ejecta mass at 1.4M_☉
- factor of 2 in ejecta masses
- some rather small differences
 between nickel and ejecta mass

Ejecta masses

The promise of the (near-)infrared

- Extinction is much reduced in the near-IR
 - $-A_H/A_V \approx 0.19$ (Cardelli et al. 1989)
- SNe la much better behaved

Others find this too

 Light curves in the near-IR very uniform at peak, but large differences at later times

Large literature sample

Scatter minimal at first maximum in Y (1.04μm), J (1.24μm), H (1.63μm) and K (2.14μm)

~90 objects in J and H
– 58in Y, 22 in K

Mostly Carnegie SN
 Project data
 (Contreras et al. 2010,
 Stritzinger et al. 2011)

Infrared light curves

NOT after maximum

Late decline (t>40 days)

Correlations

Phase of the second maximum appears to be a strong discriminator among SNe Ia

Correlations

Luminosity of late decline and the phase of the second maximum are linked

Correlations with the optical

- IR properties correlate with optical decline rate
- Phase of secondary maximum strongly correlated Δm₁₅

Correlations

 Note very only weak correlation with the peak magnitude!

Dhawan et al. 2015

Correlation with optical colour

Phase of second maximum and beginning of the Lira relation are also tightly linked

Summary

Dhawan et al. 2015

SNe Ia in the NIR

Consistent picture emerging

- Second peak in the near-IR is the result of the recombination of Fe⁺⁺ to Fe⁺ (Kasen 2006)
- Uniform ejecta structure
 - late declines very similar

- higher luminosity indicates higher ⁵⁶Ni mass
- later secondary peak also indicates higher
 Fe/Ni mass
- Ni mass and (optical) light curve parameters correlate (Scalzo et al. 2014)

Nickel masses directly?

- Correlate phase of second maximum with observed nickel masses
 - avoid 'detour' through optical light curve shape parameter (Δm_{15})

Luminosity function of SNe la

Use the phase of the second maximum to derive the bolometric peak luminosity

- calibrated on a sample of reddening-free SNe Ia
 - SNe with E(B-V)<0.1
 - pseudo-bolometric light curves (UBVRIYJH)
- apply to reddened objects

Luminosity function of SNe la

$M_{\rm Ni}$ (inferred)	σ	Method	Reference
0.62	0.13	γ ray lines	Churazov et al. (2014)
0.56	0.10	γ ray lines	Diehl et al. (2015)
0.37		Bolometric light curve $A_V = 1.7$ mag	Churazov et al. (2014), Margutti et al. (2014)
0.77		Bolometric light curve $A_V = 2.5 \text{ mag}$	Churazov et al. (2014), Goobar et al. (2014)
0.64	0.13	NIR second maximum	this work (combined fit)
0.60	0.10	NIR second maximum + measured rise	this work

- SN 2014J test passed
- Potential to determine the luminosity function and Ni distribution

Nickel masses

- Using a timing parameter for nickel masses
 - completely independent on reddening and multiple light curves
- Explore different methods to calculate the nickel mass (currently still all Chandrasekhar-mass progenitors

Dhawan et al. 2016

Fast-declining SNe la

Two groups?

- selected SNe Ia with $\Delta m_{15}(B) > 1.6$
- separation in
 - bolometric luminosity
 - phase of NIR first peak
 - Iuminosity of NIR first peak
 - lack of second second NIR maximum
 - SN 1991bg-like spectrum

Fast-declining SNe la

Phase of first NIR peak

Implications for the explosions

Nickel and ejecta mass

clear indication
 of sub-Chandra
 explosions

Dhawan et al., submitted

Summary

- Double-degenerate WDs promising progenitor channel
 - SN 2011fe, DD statistics, explosion models
 - some probably through other channels
- Nickel shapes most SNe la
- Ejecta mass varies
- Different explosion mechanisms?