
New Architectures Support for ALMA Common Software:

Lessons learned

Camilo E. Menaya, Gabriel A. Zamoraa, Rodrigo J. Tobarb, Jorge A. Avariasc, Kevin R.

Dahl-Skoga, Horst H. von Branda and Gianluca Chiozzib

a Computer Systems Research Group, UTFSM, Valparáıso, Chile;
b European Southern Observatory, Garching bei München, Germany;

c National Radio Astronomy Observatory, Socorro, NM, USA

ABSTRACT

ALMA Common Software (ACS) is a distributed control framework based on CORBA that provides communi-

cation between distributed pieces of software. Because of its size and complexity it provides its own compilation

system, a mix of several technologies. The current ACS compilation process depends on specific tools, compilers,

code generation, and a strict dependency model induced by the large number of software components. This doc-

ument presents a summary of several porting and compatibility attempts at using ACS on platforms other than

the officially supported one. A porting of ACS to the Microsoft Windows Platform and to the ARM processor

architecture were attempted, with different grades of success. Also, support for LINUX-PREEMPT (a set of

real-time patches for the Linux kernel) using a new design for real-time services was implemented. These efforts

were integrated with the ACS building and compilation system, while others were included in its design. Lessons

learned in this process are presented, and a general approach is extracted from them.

Keywords: ALMA, ACS, CORBA, framework porting, multi-platform

1. INTRODUCTION

The creation of full cross-platform compatible code is not trivial, even when this is a problem that has been

studied before. The complexity is high, and it is even worse when the framework itself does not consist in a few

set of files, but of a large amount of code written in several languages, lot of scripts, building patterns, testing

tools, code generations, and much more. The work presented in this document is focused on such a framework:

ALMA Common Software (ACS). ACS is a distributed control framework based on CORBA intended to be used

as a standard for all the software and subsystems that conform the ALMA project.1,2 Thanks to its open LGPL

license, ACS can be used in any other astronomical project, particle accelerators and also allows the contributions

of many users and researchers, thus making it possible to change the source code if needed for specific needs.

The official release of ACS is only supported on Scientific Linux and Red Hat Enterprise Linux. This limitation

can be a disadvantage when thinking on using ACS for other projects, as all the tool development environments

and expected hardware are limited to the the ones supported by the mentioned operating system flavors. Since

the first releases of ACS, several efforts have been made to open it to new platforms and architectures, but due

to different constraints this has not been always an easy task. From the most important strict limitations with

some base tools software versions (i.e.: GCC and glibc), to the small or non existent support on other completely

different architectures, like embedded systems or the widely used Microsoft Windows. Since ACS has always

been focused to a few Linux distributions, and also because all of the development and changes made in the

meantime, this relation is now stronger, making it harder to break. As explained in the following sections, ACS

is built on several base operating system tools, and some of its external products have low level communication

with the underlying platforms, making the task of porting ACS to a non-officially architecture or platform non

trivial .

These constraints and difficulties have been addressed by the ALMA-UTFSM Group during a long timespan,

which has generated a large amount of knowledge and experience on how we can extend a large complex framework

such as ACS to new uses. It is also important for frameworks like ACS, and projects like ALMA, which have a

long expected life-time, must be constantly adapting to technology changes; otherwise, they will become quickly

obsolete, or will become increasingly hard to support.

In this document we want to share the lessons, experiences and conclusions that we have acquired during this

work. These have been (and will be) important to achieve the objective of adding support to new architectures

and platforms, not limited to ACS, but also to any other large software framework.

1.1 The ALMA Common Software

ALMA3 is a radio-astronomy project conducted by the European Southern Observatory (ESO), the National

Astronomical Observatory of Japan (NAOJ) and the National Radio Astronomy Observatory (NRAO). It will

consist in 66 antennas, located on the Chajnantor plateau (in the North of Chile), that will be used simultaneously

to make radio-interferometry, being able to observe and study phenomena never studied before.

This project implies a large number of challenges, starting from the geographic location: antennas will located

at 5000 [m] above sea level, while the Operations Support Facility (OSF) is being based at an altitude of 2800 [m].

This is the place where main operations are carried out, and people will not be present frequently at the high

site.

To cover the distributed nature of the problem, ALMA Common Software2 (ACS) has been developed. ACS

is a distributed control framework developed to be used not only by ALMA, but also by any other project that

might want to use it. ACS is based on CORBA technology, and includes open-source ORB implementations

for C++, Java and Python (TAO,4 JacORB5 and OmniORB6 respectively). It is distributed under the LGPL

license, allowing it to be used in other projects, and facilitating its development by including people outside the

project.

Apart from being based on CORBA, ACS uses the Container/Component architecture for software devel-

opment/deployment. Developers write Components, which in turn are run in Containers. Containers can run

on different hosts, and are available for the three mentioned programming languages. The entire set of running

containers that conform a given deployment is orchestrated by a Manager. There are also other services and

facilities, such as a centralized Configuration DataBase (CDB), Logging Service, Alarm Service, Notification

Channels, and more.

ACS provides a standard environment which must be loaded for getting access to all its components. When

developing under ACS, this environment also provides a set of Makefiles, which are the main actors in the

ACS building system. This environment is heavily based on UNIX tools, and currently ACS is only officially

supported on Red Hat Enterprise Linux and some versions of VxWorks.

2. WORK DESCRIPTIONS

The following is an explanation of the development of different tasks performed in this work, detailing method-

ologies, tools and techniques used, in addition to pointing out the disadvantages and degrees of success in these

tasks

2.1 Porting ACS to different Linux distributions and newer GNU compiler versions

A first attempt to port ACS to a different Linux distribution was done back then when ACS version 3 was

released (2003). This effort was done by the Observatorio Astronómico Nacional (OAN), Spain∗. The porting

was done using Debian 3 as Linux distribution, which is quite different from Red Hat Linux. The main problems

were the compatibility of the GNU C compiler (GCC) suite used in Debian (version 2.95). In contrast, Red

Hat Linux 7.2 (the supported platform for ACS at that time) used GCC 2.96. This version of GCC was an

experimental branch, a pre-release of GCC 3. The two GCC versions generated incompatible binaries and the

code gave strange errors when compilation was tried on Debian 3.

When ACS 4 was released (2005), it used GCC 3.2 for building. This time the compatibility between ACS 4

and Debian 3.1 was very straightforward, because the binaries were compatible between Red Hat Linux 8, the

Linux distribution supported at this time, and Debian 3.1. To use ACS it was only required to install the binary

files directly, fix a couple of symbolic links and set the environment variables needed by ACS properly. This

situation was maintained until ACS 5 (2006).

∗http://almasw.hq.eso.org/almasw/bin/view/ACS/PortingAcsToDebian

By the time of the ACS 6 (2007) release, the computers’ hardware had changed, sometimes incompatible

with the Linux distributions that ACS supported. For ACS to run on new hardware, it was necessary to use

a newer Linux distribution built with the GCC 4 compiler, or port the needed drivers to the kernel used by

the official supported distribution. This task was not always possible, and, as had happened before, GCC 3

generated binaries incompatible with GCC 4. Therefore, this time it was necessary to port the entire ACS code

to the new compiler. The ALMA-UTFSM Group7 had previously done a successful ACS porting from Red Hat

Enterprise Linux (RHEL) 4 to Fedora Core 6 (base for RHEL 5).8 During this task the major problem was the

change of the C++ compiler from one distribution to another: RHEL 4 uses GCC suite version 3.4, while Fedora

Core 6 used GCC version 4.1. This version difference caused that the source code of ACS could not be built

directly, basically because the newer version of GCC is more strict with the syntax and handling static global

variables. This new compiler version also added new features which were, in some cases, incompatible with the

source code of ACS written for GCC 3.4. Thanks to the work done by the ALMA-UTFSM Group, ACS now can

be used on different Linux distributions that use newer GCC versions. Currently, ACS runs on Ubuntu Linux

7.10, 8.04, 8.10; Debian Linux, OpenSuse Linux 10 and 11. The official support for ALMA has started using,

in testing and production environment, RHEL 5.3 with ACS 8 (2009), which includes the changes done in this

porting process.

After the porting process of ACS to the version 4.1 of the GCC compiler, a second porting process was

undertaken by the ALMA-UTFSM Group to compile ACS under the 4.3 version of GCC. This newer version

is even stricter that its previous version in the syntax of the code, specially respect to omitted #include state-

ments and namespace specifications. This second porting process resulted in a set of patches not only for the

CommonSoftware, but also for the ExtProd, Kit and Tools packages, and enabled the usage of ACS in even

newer Linux distributions, like Fedora 10 and Ubuntu 9.4. These patches have not been yet included in the

official ACS release.

An effort to port ACS to Windows XP was conducted in the past by Observatorio Cerro Armazones (OCA) †

during ACS releases 2 and 3. The main goal was to use a subset of the C++ functionality of ACS, an ACS C++

simple client, together with LabVIEW 7.1. To port the required parts Cygwin was used as a Linux compatibility

layer, avoiding most of the complications of porting ACS code from the POSIX API to the Windows Native API.

But this also introduces incompatibilities with the loading of shared libraries when ACS is used together with

LabVIEW. Finally, some of the issues were fixed or a workaround was found for them, providing a functional

subset of ACS on Windows.

2.2 Porting ACS to Windows

One of the latest efforts undertaken by the ALMA-UTFSM Group has been to port the ACS framework to the

Microsoft Windows XP operating system. Although some work has been done in this direction, there is still

much work left to do, and that is being analyzed at the time of writing. The current finished work includes the

porting of the most important runtime scripts and utilities, part of the compilation system, and the Java-coded

portions of the framework. The Java-coded portion of the framework was tackled first because, thanks to Java’s

portable nature, it was the easiest starting point. Please refer to9 for more detailed information about the work

referred in this section.

Porting ACS to Windows opens a huge range of opportunities that otherwise would be unreachable by only

having ACS running on Linux. It would allow, for example, to use Windows-only available libraries and/or tools,

as the .NET framework or some features of LabVIEW that perform better under Windows. Simultaneously, it

would open the possibility to communicate with a number of devices that have only drivers for Windows.

Finally, a considerable number of users might feel more comfortable using ACS under Windows to keep their

work environments with them.

To perform such a task, a UNIX-like environment was urgently needed. For this reason we used Cygwin,10

because it offers implementations of all the most important basic programs needed to work in a UNIX-like

environment (e.g., bash, ksh, grep, among others). These tools are needed by the compile system (based

in make and scripts) and the runtime environment of ACS. This way, we avoid rewriting the entire runtime

†http://almasw.hq.eso.org/almasw/bin/view/ACS/PortingAcsToWindowsXP

environment and compilation system that comes with ACS, and we can reuse it with some minimal effort. For

compiling the Java code, we installed the Windows version of the Java Virtual Machine. Some basic external

products are also needed by ACS, such as Python, TAO and JacORB. We compiled these using the Microsoft

Visual C++ Studio compiler, in the case of C/C++ sources, and with the Java compiler, in the case of Java

sources.

ACS makes all its environment available by sourcing a large file with definitions of paths, libraries and

environment libraries. This was the very starting point of the work. A successful source of this file introduces the

user to the ACS environment, where all the tools are available, and compilation can take process. Nevertheless,

this environment is heavily based on scripts, which sometimes had some UNIX-specific values set into variables.

An example of this is the CLASSPATH separator: While on UNIX it it usually a colon (:), in Windows it must

be a semi-colon (;). Cases like these, which repeated along several scripts, and even through the Makefile

infrastructure, were solved while maintaining the support for UNIX-like environments.

The complete compilation process was mainly: Base tools, then external products, Kit and finally ACS

Common Software. As we were using Cygwin as environment, all the base tools were already covered (e.g.,

bash). As stated before, the external products were compiled using the native Visual C++, as most of the source

code ships with a Visual Studio solution file. For the Common Software, we had to check the dependencies as

several modules must follow an strict order. This information can be found in the Makefile and needs to be

adjusted manually. As Java is multi-platform, we did not expect too much trouble, but ACS being such a large

framework, there are lots of scripts, environment variables, Makefile and others, that must be correctly set to

work on a specific platform. Also, ACS compiles the CORBA IDL files for the three supported languages, but

as we are only trying to compile for Java, we used some flags that the ACS Makefile provides for this cases,

(i.e. MAKE ONLY=Java).

After fixing a large number of files and adding support to the Windows platform in the needed scripts, as

the nature of ACS is to be a distributed framework, the next step was to test if our development machine

with Windows XP installed was integrating correctly with the Linux ones that had the entire ACS framework

running. In particular, it was necessary to check if the Java side of ACS was communicating correctly with the

ORB services that are in charge of all the distributed tasks, and with other important entities like the CDB DAL

and the Manager. The test performed was to run the ACS fundamental services on a main computer. This is

the same approach used for Linux machines not running ACS, but wanting to connect to a main computer and

execute Containers or applications that need ACS. Due to the ACS architecture it was possible to run a Java

container on a Linux machine and use the Java components there. If the porting process was successful, then

the same should work with a Windows machine using our ACS port and running Java only containers.

Aside from containers, ACS ships with a set of useful GUI applications. Most of them are written in Java

and present important features that are heavily used, like jLog, an application that allows to check all the logs of

different systems with level filtering and objexp useful to check and try the different components that are running

in a given ACS Manager.

In figure 1, you can see the actual test performed. It shows ACS working in a distributed environment, several

machines working together with Linux and MS Windows communicating with a main computer that is running

the more important services needed: ACS Manager, the ORB services and DAL. It is possible to see that there

are several containers running for different languages. Running a container means that you can execute all the

components written in that specific language and also in the case of Java, if we have complete support is possible

to run all the useful GUIs.

The correct functioning of the environment that figure 1 shows validates the porting process and its results,

as everything is working correctly as it would in a Linux machine. It was possible, for example, to follow the

logs of the ACS Manager and all the Containers from different machines running there with jLog.

Finally, the concrete result of all this work was a set of patches that we applied locally to our source code

and that we then compiled once again in Linux, to check that our patches were not breaking anything. We

also produced a simple installation guide ‡ that allows a user to download a package with the binaries already

‡https://csrg.inf.utfsm.cl/twiki4/bin/view/ACS/AcsWindowsInstallationGuide

Figure 1. ACS in a distributed environment

Figure 2. Cross-compilation process overview

compiled and with some short instructions to reproduce the Java ACS environment ready to work. Since our

changes are compatible with the original ACS sources, and have been tested also against Linux compilations,

applying them to the ACS official sources is very possible. This work has been already been discussed with the

ACS development team, and will be undertaken in the following months. Also, C++ and full Python support is

being currently studied by the ALMA-UTFSM group at the moment of writing.

2.3 ACS ARM Porting

One of the ALMA-UTFSM Group research tasks was to port ACS to a different architecture than the one on

which it was developed. The election was the ARM architecture, because of its great use on the embedded

systems world. This work had several objectives: Test the flexibility of ACS’s code, check intercommunication

between different architectures in a distributed environment, add to ACS the capability to be deployed on small

machines, making them part of a greater distributed control system, and taking advantage of their capabilities,

like minimum use of energy and real-time features.

Due to the huge number of lines of code that ACS comprises, the time it would take to compile the software

on an ARM machine would be problematic. Actually, in some cases it could be impossible due to restrictions of

the hardware, since most ARM-based machines have very limited resources. An alternative to this is to use tools

that allows compilation of code for a given architecture A, but on a different architecture B, generally with more

processing power. This technique is called cross-compilation. In the case of ACS, we aimed to cross-compile

ARM code on a normal x86 computer (figure 2).

To carry out a cross-compilation it is necessary to provide a software environment within the host architecture

which allows all the processes that are usually run on the target architecture to run transparently and smoothly

on the host architecture, thus being able to produce and even test run code of the target architecture within

the host computer. Such an environment consists of compilers, libraries, and tools, which together provide an

abstraction of the target architecture (figure 3).

In the following subsections we present several cross-compilation environments and tools which were tested,

and with which we obtained different results at different levels. For testing purposes we have an ARM embedded

machine with an XScale PXA270 processor (ARMv5).

Figure 3. Cross-compilation environment

2.3.1 GNU-ARM toolchain and libc for ARM

The first approach for compiling the C++ modules of ACS for ARM consisted on making use of the GNU-ARM

GCC-4.1 toolchain,11 which includes C and C++ cross compilers. GNU-ARM toolchain source code was compiled

and installed under Debian Lenny for i386. At first there were problems in the compilation of the toolchain,

most probably because there haven’t been new releases of this toolchain since 2006. Regardless, minimal changes

in the source code were enough to solve these problems. Once installed, it was successfully tested, compiling a

simple C program and generating an ARMv5 binary that could be executed on an ARM machine. The problem

is that just compiling code is not enough for an ACS build for ARM machines, and running the executables

in some other architecture than ARM is not possible just by having versions of libc for ARM installed on the

system. This is not the right way of building complex systems like ACS, where pieces of the system just built

are used to build further parts. A better way would be using a virtual machine that runs an ARM processor

within it, but without the hardware limitations that would make it slow. The ultimate solution is to reorganize

the build process for cross-building, but that would be a huge undertaking.

2.3.2 Emdebian alternative

An alternative solution tested was the Emdebian12 (Embedded Debian) cross compilation toolchain, which,

unlike ARM-Linux tools, is very easy to install. The process consists on adding a Debian repository, and then

install the tools using the apt installer. Once the packages are installed and configured, the cross compilation of

C or C++ code for ARM is possible.

2.3.3 Scratchbox

Scratchbox13 is a cross-compilation toolkit designed to make embedded Linux applications development easier. It

provides tools to configure a cross-compilation environment where the user can define a specific target architecture

(in our case it was ARM). It includes a complete set of compilers (e.g. GCC 3.3) and runtime libraries (e.g. glibc

2.5). Since we have an ARM XScale PXA270, Scratchbox was configured for that purpose. Before any compilation

it was necessary to install some tools on which ALMA software depends, such as ksh. Also, minor problems

were fixed, very similar to those which arose during the porting to the Windows platform (see section 2.2), such

as symbolic links for the shells, the echo command, among others.

After successfully setting up the cross compilation environment, we proceeded to compile the software on it,

starting with the External Products. In this regard, the Tcl/Tk compilations presented problems because they

depend on Xlib headers. As for the compilation of ACS’ Common Software, the major problems that could not

be solved were the fact of not having a Java Runtime Environment (JRE) for the target architecture, since Sun’s

version is only available for newer versions of the ARM architecture like ARMv6. A JRE is needed by several

compiling steps, including code-generating and IDL compilation. To solve this problem, we tried to cross-compile

the OpenJDK,14 an open source version of Sun’s Java Development Kit (JDK), but this presented problems due

to the age of the compilers and libraries provided by Scratchbox (GCC 3.3 and glibc2.5).

In summary, in order to compile ACS on this architecture we would: (i) had to skip any Java-related

compilation, or (ii) run the Java-related steps in a separate x86 machine, and copy the generated files by hand

Figure 4. ACS maturity process: Control of complexity

to the target environment. This is a complicated and error-prone process, and it would become more complex

while compiling more and more modules, since new intermediate Java-dependent steps might arise unexpectedly.

2.3.4 Reducing the size

Many ARM based machines have very limited disk space. For this purpose we used the strip tool, which

removes information from executable binary programs and object files, thus potentially resulting in significantly

less disk space usage. To illustrate, consider all shared libraries (*.so) from ACS that are in the directory

$ACSSW/lib, which originally used 447 MB on disk. After using the strip tool on all these shared libraries, the

size was reduced to 81 MB, making the elimination of about 81% of unnecessary information in the first instance,

which indicates that it is an important point to note in situations which we find ourselves with limited resources

against large pieces of software.

3. CONCLUSIONS

With the passing of time, ACS has gone through several levels at the time of the various porting processes

explained above, making it clear that as new features are added to ACS the more complex the task of porting

the framework becomes, both compiling the software on different platforms and architectures, and the replication

of the standard environment. These tasks complicate due to changes in standards of compilers, libraries and

the hardware itself. A very important point to note for large and long-term living projects, such as ALMA, is

the need of constantly adapting to new technologies, which often become obsolete after only a few years. For

example, the current GCC version is 4.5, GCC version 2.95 is no longer used or supported nowadays, while versions

3 are being phased out.

While the complexity of the maintenance has been rising when updating both platforms and architectures,

it has been gradually decelerating. This is due to several factors, the most important one being the experience

of the developers about ACS (figure 4), obtained thanks to years of working on these problems, methodologies

and techniques for achieving better results, and changes in technology and standards. On the other hand it is

important to note that due to the nature of the software itself it was possible to create a collaboration of different

groups; in our case the ALMA-UTFSM Group has contributed in the porting tasks, among others. This implies

that knowledge about it can be distributed between different institutions collaborating with the ALMA project,

achieving lower complexity curves involved these tasks.

In the technical corner, we can say that one of the main points to note is the fact that the code is not the

most important part of a framework, but just one component. This came into evidence several times, when

difficulties arose not because of incompatible code, but because of an invalid runtime/compiling environment.

The environment is then crucial when it comes to take a piece of software and port it to non-supported platforms.

Sometimes it is easy to replicate the standard environment (e.g., when porting from one Linux distribution to

another), but in other cases the support must be explicitly added into the framework (as in the case of the

Windows port). Other solutions might arise with time, but these two have been the ones that we have used until

now.

Regarding the ARM port, this was hampered by poor documentation and lack of support for basic tools used

by ACS as a base, specifically referring to Java, in addition to the complex and rigid compilation system that

ACS uses. Nevertheless, some of these problems are specific to the ARM version used (ARMv5). As a future

work, it might be interesting to continue this work for newer versions of the ARM processors, for which there

is a Java Virtual Machine available. The build system is also an addressable problem, and studies of several

improvements with respect to the rigidity of the compilation system can be done, allowing more flexibility to the

developers, while trying to making minor changes to ACS.

In the case of the Windows port, work is being done by the ALMA-UTFSM group on finishing the Python

and C++ portions of the framework. On the other hand, the ACS development team has taken the previous

Java porting work, and is applying these to the HEAD of ACS with the intention of including them in the release

of ACS 9.0. The Python and C++ porting efforts are also intended to be included in the mainstream. This

will open a new wide range of projects that might want to use ACS, provided that it runs over the Windows

platform.

Acknowledgments

This work is part of the ALMA-UTFSM Group, which in turn is part of the CSRG Group at the UTFSM. This

work has been supported by ALMA-CONICYT grant #31060008. Horst H. von Brand’s work was also supported

in part by Centro Cient́ıfico-Tecnológico de Valparáıso (CCTVal) grant FB0821. Thanks to Heiko Sommer, and

specially to Gianluca Chiozzi, for their interest in this work.

REFERENCES

[1] Chiozzi, G., Gustafsson, B., Jeram, B., Sivera, P., Plesko, M., Sekoranja, M., Tracik, G., Dovc, J., Kadunc,

M., Milcinski, G., Verstovsek, I., and Zagar, K., “Common Software for the ALMA project,” in [Proceedings
of ICALEPS], (2001).

[2] Chiozzi, G., Sekoranja, M., Caproni, A., Jeram, B., Sommer, H., Schwarz, J., Cirami, R., Yatagai, H.,

Avarias, J. A., Hoffstadt, A. A., Lopez, J. S., Grimstrup, A., and Troncoso, N., “ALMA Common Software

(ACS), status and development,” in [Proceedings of ICALEPS], (Oct. 2009).

[3] Tarenghi, M., “The Atacama Large Millimeter/submillimeter Array: Overview & status,” Astrophysics and
Space Science 313, 1–7 (Jan. 2008).

[4] Schmidt, D., “The ACE ORB webpage.” http://www.cs.wustl.edu/~schmidt/TAO.html.

[5] Spiegel, A., “The JacORB web page.” http://www.jacorb.org.

[6] Grisby, D., “The omniORB web page.” http://omniorb.sourceforge.net.

[7] Brand, H. H. v., “Software development for ALMA in Chile: The ACS-UTFSM Group,” in [VI Reunión
Anual de la Sociedad Chilena de Astronomı́a (SOCHIAS)], 53–+ (2007).

[8] Avarias, J., “Repackaging ACS for embedded systems,” Tech. Rep. 12/2007, Departamento de Informática,

Universidad Técnica Federico Santa Maŕıa (2007).

[9] Tobar, R. J., Menay, C. E., Avarias, J. A., and Brand, H. H. v., “Porting a large distributed control

framework to the Windows Platform,” in [XIII Workshop on Parallel and Distributed Systems], (Nov.

2009).

[10] Cygnus Solutions, “Cygwin webpage.” http://www.cygwin.com.

[11] GNU ARM, “GNU-ARM project.” http://www.gnuarm.com.

[12] Emdebian, “Embeded Debian project.” http://www.emdebian.org.

[13] Scratchbox, “Scratchbox, a cross-compilation toolkit.” http://www.scratchbox.org.

[14] Sun Microsystems, “OpenJDK.” http://openjdk.java.net/.

