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Course Abstract

This course provides an analysis of the advantages and requirements for an integrated software infrastructure for
observatories and similar scientific facilities. It providesacommon framework for application software that can
range from control to data analysis applications. Currently available and emerging technologies are eval uated
and compared. The course concentrates on the architecture of an application framework necessary for such an
infrastructure and on the impact on scalability, maintainability and reuse. Many practical examples will be given
based on the ALMA Common Software, a CORBA-based, open source solution used by ALMA and other
projects.

L ear ning outcomes:
This course will enable you to:

eidentify the advantages and requirements of an observatory-level software infrastructure
ecompare existing and emerging technologies

eestimate the impact of introducing a common software framework in a new or pre-existing project
«demonstrate applications implemented using the concepts described in the course

Intended audience:

Thismaterial isintended for anyone who is involved in the design and refurbishment of the software
architecture of a scientific facility and in the selection of the middle-ware architecture to use. Those who
develop applications integrated in the data flow and control infrastructure of an observatory will find this course
valuable.

Instructor:

Gianluca Chiozzi currently works at the European Southern Observatory in Munich. For the last 15 years he has
been heavily involved in the design and implementation of the Common Software and Telescope Control
Software for the VLT and ALMA projects. He isnow head of the Control and Instrumentation Software
Department. Before ESO he worked at the IBM Technical and Scientific Research Center in Milan.
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Course Objectives
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observatory-level software infrastructure
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» Compare technologies

» Estimate impact of a common software
framework in a new or pre-existing project

» Demonstrate applications
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This course provides an analysis of the advantages and requirements for an integrated software infrastructure for
observatories and similar scientific facilities. It provides a common framework for application software that can
range from control to data analysis applications. Currently available and emerging technologies are evaluated
and compared. The course concentrates on the architecture of an application framework necessary for such an
infrastructure and on the impact on scalability, maintainability and reuse. Many practical examples will be given
based mainly on the ALMA Common Software, a CORBA-based, open source solution used by ALMA and
other projects.

L ear ning outcomes:
This course will enable you to:

eidentify the advantages and requirements of an observatory-level software infrastructure
ecompare existing and emerging technologies

eestimate the impact of introducing a common software framework in a new or pre-existing project
«demonstrate applications implemented using the concepts described in the course

I think it isimportant to adapt the course to the audience and follow up the questions.

Therefore these course note masters are not cast in the stone and, if necessary and useful, we can decide to go
sometimes into deeper details or to skip parts that do not seem particularly interesting for the participants.

By experience, each course is different because of the different mix of participant’s knowledge and experience.
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We will divide the coursein 10 sections.
At the end of each section there will be time for questions, discussions and, in case, some extra detail.

Y ou can interrupt me at any time for questions.

I will decide case by caseif | have to reply immediately to the questions or if it is more efficient to reply later or
to let the reply come out by itself from other parts of the presentation.



s SO i i
Let’s introduce ourselves
o
/““-
W
SPIE 2008 — SC-644, An Introduction to Scalable Frameworks for Observatory 5
G.Chiozzi Software Infrastructure

Let’sgo around the classroom and introduce briefly ourselves:
*Who are we?

*What do we expect from this course?

*Any suggestions?

| am Gianluca Chiozzi and | am working at the European Southern Observatory in Munich.
Y ou can reach me at any time at the following email: gchiozzi @eso.org

Sine 2007, | am responsible for the ESO Control and Instrumentation SW Department, with about 20 people
assigned to different projects (VLT, VLTI, ALMA, E-ELT).

| am also spending some “technical time” in the architecture and design of the E-EL T Control Software.

Before that | was responsible for the ALMA Common Software (ACS) architecture and development, with a
team of about 10 people (not all full time) distributed in various sitesin Europe and North America. ACSisthe
software infrastructure for the ALMA project and is used also by other projects. | have been working on ACS
and in ALMA since about the year 2000.

Before ALMA and ACS | have been heavily involved for about 6 years in the design and implementation of
the VLT Common Software and Telescope Control Software. Here | have been responsible for introducing
Object Oriented technology in the project, working on the architecture and design of some control subsystems
and on the implementation of OO class libraries for the Common Software infrastructure.

Before ESO | have been employed at the IBM Technical and Scientific Research Center in Milan, working on
image recognition systems and on user interfaces for utility management systems (like electrical or railways
networks).
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The Modern Observatory

to end data flow)
 Archive and virtual observatory integration.

» Feedback systems and distributed control

loops.
* Big projects and small projects: what are the
differences?
SPIE 2008 — SC-644, An Introduction to Scalable Frameworks for Observatory 7
G.Chiozzi Software Infrastructure

A modern Observatory (or any other experimental facility) has acomplex integrated and distributed architecture.

In the past, the Astronomer (the main stakeholder for our systems) was traveling to the Observatory, make his observations,
store data on tape and go back home to reduceit.

The telescope and, eventually, the instruments had a control system virtually independent from everything else.

Data reduction was done offline after the observation and there was no direct feedback from the observation data to the
control system. An experienced observer was just driving the tel escope based on his own feelings.

There was no observation data archive, no quality of service measures and constraints, no facility engineering in the terms we
think of now.

This has dramatically changed in the past 15 years, with the big observatories like VLT, Keck, Gemini, Hubble and so on.
Since the major observatories are now providing integrated facilities, astronomers expect the same also from smaller ones
and the amount of integration required for the new projects like ALMA and the giant optical telescopes will be even more.
The Virtual Observatory is also contributing to this need for integration and quality control adding the intra-observatory
dimension to the problem.

Now all the systemsin an Observatory are fully integrated.

Observation data, weather and telemetry are directly fed back in the control system to obtain optimized performance.

The astronomer isin many cases not even any more going to the observatory, but monitors the observation from his own
institute and can ideally interact with the system remotely when the observation is taking place.

The astronomer expects to interact with the system using “standard” Web technology.
Datais archived to be usable by Virtual Observatories and therefore has to contain calibration and quality information.

Engineers and people responsible for the administration and maintenance of the observatory are another important
stakeholder. More and more performance is measured and telemetry information is analyzed daily to perform preventive
maintenance and optimize the system or to measure performance trends over long time periods.

The new systems being designed now (like the ELTS) will need to coordinate the real time operation of devices distributed
over large distances (hundreds of meters or even more). Thisis rising distributed control challenges to the next level.

Big projects are driving this evolution, but aso small projects have to follow up in this direction to match the expectations of
the observers. For them, the reduced budget makes it unaffordable to develop in-house integrated solutions. Many small
projects are therefore interested in adopting solutions developed by other, bigger, ones.
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We can take as an example the Architecture of ALMA (but we could take the VLT, Hubble or any other major
observatory).

Wewill start analyzing the overall architecture of ALMA and see how it impacts the software architecture.
First of al you can notice that ALMA isavery geographically distributed system:
*AOS: Chajnantor (5000m)
*Move antennas (scattered up to 14 km from correlator)
*Swap in/out hardware modules
*OSF San Pedro (2800m, ~30 km from array)
«Control & monitor array
*Repair Hardware
*SOC: Santiago
*Run pipeline
*Maintain archive
*Regiona Centers: USA, Europe, Japan
*Accept proposals
*Deliver data packages
*Provide User support
*Astronomer’ sinstitutes:
*Submit proposals
*Monitor and interact with observing projects
*Data reduction



Observatory Software Scope

 Proposal preparation and review

» Scheduling of observing programs
» Observation

« Calibration and Imaging

» Data delivery and archiving
 Data reduction

 Archival Research and Virtual Observatory

compliance
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Astronomers expect from the software in an Observatory a wide scope of services.
They need to be al integrated together.

Also, astronomical observation isnot limited to expertsin the field (like infrared or radio astronomers), but it
shall be open to chemists, biologists and other multi disciplinary researchers.

The general user should be given standard observing modes to achieve project goals expressed in terms of
science parameters, rather than technical quantities. But experts must be able to exercise at the same time full
control.

Making things easy and flexible for the astronomer adds up complexity to the software development



ALMA Software Architecture

| Executive
I et science data ! _-;1::‘,::?;.— IT
‘—I Ohhservation R W Natify © Start
2. Store observing projedi Preparation | M:Ehl '.":'r'"j'lm
Condition -
Telescope
inei Operator
o, Get project data
& breakpuint _
, g | BNy 11 ©. Alter Schedule | Overrile action
A |3 Get project definitig _ .
r "6 Start data reduction
f_l = T et raw data & metadata | Data L
1 %.2 Store ach e 1 Pipeline |
v 4. Dispatch seheduling block id i Hlare seenee re s e
e [ Real-time
ical ¥ 5.6 Store calibrateon ress
.4, Story meta-data | {'""I'_" Sysem: | Calibration Pipeline
A Mlunklar puinds { I 52 Setup correlator = Pruary fusctional pathes
= Additonad functions
£ 2 554 Access raw data & meta-dlal s
* oy 3 T ALMA software subsystem
5.3, Stork raw data Correlatar Quick Look Pipeline = evternal actoe
|
— 5.7. Slare quick-louk resails
ALMA Common Software
SPIE 2008 — SC-644, An Introduction to Scalable Frameworks for Observatory 10
G.Chiozzi Software Infrastructure

Again we can take as an example a schematic architecture of the ALMA software (A.Farris, J.Schwarz ALMA
HLA team).

This diagram shows the main subsystemsin which the software has been divided and the main relationships
among then in the form of a collaboration diagram describing the typical lifecycle of a project, starting with
proposal submission and ending with aresearcher looking for the data in the archive after the observation has

been performed.



Functional Architecture

» Software components/subsystems
— Responsibilities
— Interfaces

— Primary relationships and interactions
* Physics and algorithms

» Hardware deployment and distribution
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The previous diagram shows the “ Functional Architecture” of the system.

The functiona architecture is built based on the user requirements.

The functionality that needs to be implemented is assigned to components/subsystems and the architecture
describes the responsibilities of each subsystem and the interfaces that are exposed to the other subsystems or to
the external world.

Then the relationships between the subsystems (i.e. how these interfaces are used when asking reciprocally
services) are described.

The functionality must be implemented according to the physics of the system and must implement specific
algorithms that must be described in this architecture. For example scheduling algorithms, control algorithms,
data reduction strategies are all part of the functional architecture.

Another essential driving factor isthe actual deployment and distribution of the hardware that must be
controlled by the software. For example, the physical deployment of motors and sensors and the physical
connection of the electronics to the control computers affects the functional architecture of the system. Or the
location of the data archives and of the CPU factories for data reduction.

11



Technical Architecture

networking
 Database technology
» Software deployment and activation
* Programming model
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The “functional architecture” must be supported by a “technical architecture” that describes (and implements)
the technical aspects of the software, like the communication protocols used, the threading model, the software
deployment (process handling, distribution, activation and deactivation).

The requirements for the technical architecture are mostly derived requirements.

While the user requirements are the basis for the development of the functional architecture, we derive most of
the technical requirements from the functional architecture itself: the technical architecture shall enable usto
implement the functional architecture.

12



Separation of concerns

* Functional and technical architecture: two views

Subsystem teams should concentrate on function

Technical architecture provides them with simple
and standard ways to, for example:

— Access remote resources

— Store and retrieve data

— Manage security needs

We want to keep the two concerns separate
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Functional and technical architecture are two different views of the system.

Subsystem devel opers should concentrate on the functional aspects of the system, i.e. in the implementation of
the physics and algorithms.

They have to be freed from the need of designing and implementing mechanisms for interfacing,
communicating, deploying or handling security.

The detailed design of the Technical architecture must be mastered by infrastructure developers.

Application developers are required to understand just the concepts of both the technical and functional
architecture.

13



Infrastructure Framework
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the key to the separation between
Functional and Technical Architecture

Purpose of a framework is to:

* provide a programming model

» provide common paradigm abstractions
» mask heterogeneity

+ satisfy performance, reliability and security requirements
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The key to reach this objectiveis to adopt a Software Framework that provides a consistent infrastructure for the whole
observatory. On one side the framework has to satisfy all the requirements of performance, reliability and security derived
from the functional architecture. On the other side it must hide as much as possible its own internal complexity to the
subsystem developers and provide them with a clear and streamlined programming model.

What can be a definition of software framework?
The current definition from the Wikipedia (http://en.wikipedia.org/wiki/Software_framework) is:

A softwar e framework is"the skeleton of an application that can be customized by an application developer”. Like software
libraries, it aids the software developer by containing source code that solves problems for a given domain and provides a
simple API. However, while acode library acts like a servant to other programs, software frameworks reverse the master-
servant relationship. Thisreversal, called “inversion of control”, is the essence of software frameworks.

Frameworks are designed with the intent of facilitating software development, by allowing designers and programmers to
spend more time on meeting software requirements rather than dealing with the more tedious low level details of providing a
working system. However, there are common complaints that using frameworks adds to “ code bloat”, and that a result of
competing and complementary frameworks is that one trades time spent on rote programming and design for time spent on
learning frameworks. Having a good framework in place allows the devel opers to spend more time concentrating on the
business-specific problem at hand rather than on the plumbing code behind it. Also aframework will limit the choices during
development, so it increases productivity, specifically in big and complex systems.

However you can find many definitions pushing more of less on certain aspects of the concept of framework and even the
definition in the Wikipedia has been quite volatile.

The E-ELT project has written a Technical Requirements document for the TCS Software Framework. This document is
used for the evaluation of the different alternatives. This document states that:

Therole of the Softwar e Framework product isto allow the control software applications to communicate in this
distributed environment and to enforce a coherent integrated system. The Framework hides the operating systems from the
application, provides common services and provides an API. The Framework may or may not include dedicated tools to
generate applications, e.g. code generators, so called Application Framework. It is emphasized that the priority in this
document is on the support structure.

Thejustification of using a Framework is to make application development easier, by providing common programming
abstractions, by masking heterogeneity and the distribution of the underlying hardware and operating systems, and by hiding
low-level programming details. The advantages of using a Framework come with potential caveats. These shall be taken into
account when selecting and/or devel oping a Framework.

We will examine some of the requirements for such aframework in our domain and what options are available. 14



The path to Heaven?

~ P~

Development support/ SE

High Level Framework

Services

Component/Container

Object Middleware
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A Framework can be defined and adopted at different levels.

Wewill analyze the levels listed in the picture, considering them each as an extension or an additional layer on
top of the previous one.

The elements are listed down up in the order in which we will encounter them following our logical thread.

15
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3 — Measuring the impact of a

Framework
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Quantifying the advantages
« Can we measure the impact of adopting a
framework?
— Very difficult: all numbers are debatable
— But we have some good examples
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Can we somehow measure the advantages coming from the introduction of a framework?
Thisis very difficult and numbers here are debatable.

Theonly real way to get areliable measure would be to have a big project aready done and measured and re-do
it from scratch adopting a framework.

For sure there are some successful project that have been done to a great extent in thisway: the VLT isan
example of well performing observatory whose software has been developed within schedule based on a
framework common to a big part of the observatory.

But we cannot really measure:

*Technology is advancing so fast that we cannot really reliably compare any two software works done
at 10 years distance

*Nobody has the resources and the interest in devel oping two parallel systems with and without such a
framework.

But there are some partial examples that can be measured and can be extrapol ated.

18



Size of Instrumentation code reduced
120800 A.Longinotti, M.Kickebush — 2008
BOOKD
" FORS2
0000 " XSHOOTER
40000
) l"
o
Others
FORSZ = XSH OOTFR 75% less
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One of these comes fromthe VLT.

The Control System of the VLT and of itsinstruments has been developed based on a n infrastructure communication and
services framework (the VLT Common Software). After having developed a number of instruments it has been realized that
that there was a big potential for factorizing major parts of the architecture of the instrument in a Common | nstrumentation
Software (INS). This has been done extending the VLT Common Software with Instrumentation Software and new
instruments have been implemented using this higher level extension.

Therefore we have the possibility of comparing instruments developed with and without such a common infrastructure.

A number of the VLT/VLTI instruments has been implemented directly at ESO or with the direct participation of ESO
developer. Inany case, for every instrument there is aleast an ESO software engineer, from the instrumentation group,
assigned to follow up the consortia. More over, the software for thefirst instrument (the TC, test camera) has been always
given around as a template/example. This means that we have always taken care of making sure there were always alot of
similarities, in particular in the architecture, between the various instruments.

The development of the INS has made available an "implementation” for these similarities that has given immediate benefits.

More over, there has been a continuous feedback between the INS and instrument devel opers.
The diagram shows a significant reduction in lines of code (of the order o ¥4 in this specific case) for 2nd generation VLT
instruments using extensively the new instrumentation framework with respect to comparable 1st generation instruments.

If you add up the INS code and the XSHOOTER code, you will probably get in total more of the FORS2 lines of code (I do

not have the numbers), but the INS code is then available for reuse and its cost gets amortized back with time.

All documents abouts the INS Common Software are available at this link:
http://www.eso.org/projects/vit/sw-dev/iwwwdoc/V L T2008/dockit.html

Thislink contains the whole documentation for the VLT Common Software and includes the | nstrumentation Common
Software. Look at volumes 5a, 5b and 5c.

I would in particular look at the two specification documents in 5a.
If you are interested in the functionalities to interface to the hardware, the best document is the INS/Base ICS (Instrument
Control Software) manual. This describes the low level control architecture all sensors and devices supported.

But looking at the list of documents you will see that most of the software components of an instrument are covered and that
we provide the various consortia also with

- template of all the documents they will have to write and deliver to ESO for the acceptance.

- atest platform
Thiswill save them and us alot of time.

Also, anumber of the packages above, classified VLT Common Software, are very much oriented toward the instruments.

19



Instrumentation Sw development time reduced

FTEs

10 A
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M Integration
o B Implementation
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O Conceptual Design

UVES (Comm. 1999) VINCI(Comm. MAR2001)

UVES = VINCI 60% less

A.Longinotti — ESO Wide Review 2002
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An evaluation of the saving in FTEs was done in 2002.

Comparing the data for UVES (that does not use the INS Common Software) and VINCI (that usesit) we could
estimate again of 7 FTEsin the development phase of the project.

If we extrapolate over the development of the 23 instruments planned at that time and take into account the cost
of developing the INS Common Software itself (~25 FTESs), we get atotal gain for the astronomical community
of:

23*7-25=136 FTEs
Then we have to count the gain in maintenance.
As shown, the INS Common Software allows to reduce of ¥4 the lines of application code.

Based on the current situation at Paranal with amix of instruments with and without INS Common Software and
on the resources allocated to software maintenance for the instruments, it is reasonable to estimate a gain of
more than 2 FTES/year.

The maintenance of the INSitself is currently of ~1 FTES/year.

Therefore we can round the total gain to something like:

*136 + (1 * observatory life) FTEs

20



Size of Telescope Control Software reduced
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The VLT TCS software was conceived from the beginning to be reusable on different telescopes.

All Paranal Telescopes. Unit Telescopes (UTs), Auxiliary Telescopes (ATs), VISTA and VST and several other
ESO telescopes are reusing the basic architecture, design and code of the VLT UTs. The following figure shows
how, using the UT TCS base, the number of lines of coded needed to implement each telescope is about 1/3 of

the UT reference case.

The VLT TCSisshal therefore be considered another high level application framework built on top of the VLT

Common Software.

It should be noted that from a TCS perspective none of the developed telescopes is significantly less complex
than the reference implementation and the hardware across these telescopes is often substantially different.

This analysis shows considerable savingsin the effort needed to implement anew TCSwhen VLTSW and the
VLT TCSwere used as starting points.

21



Adoption of frameworks
Keck EPICS, JPLRTC
Gemini EPICS
ESO Paranal and La Silla observatories VLT CCS
ALMA and other projects ACS (CORBA based)
Advanced Technology Solar Telescope (ATST) ATSTCS (ICE, CORBA like)
Southern Astrophysical Research Telescope (SOAR) LabVIEW
Large Binocular Telescope (LBT) LBT specific (RPC based)
GTC CORBA based
Magdalena Ridge Observatory Interferometer JPL RTC, LabVIEW
Discovery Channel Telescope (DCT) LabVIEW
Large Synoptic Survey Telescope (LSST) ATST? LabVIEW? DDS?
ESO Extremely Large Telescope (E-ELT) ACS? LabVIEW? DDS?
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It isalso interesting to see that most projects are adopting, at different levels, an infrastructure framework.

Thetable in this dlide lists a number of projects and the basic infrastructure framework they are using, according
to my knowledge and based on areview that was done by Observatory Sciences Limited for the E-ELT in the
scope of the evaluation of the ALMA Common Software for the E-ELT Telescope Control System.

From this table you can get an idea of the palette of solutions available.

Y ou can see that most major projects are using commercial or open software solutions with awide user base
and that home brewed implementation are getting more and more uncommon, although most projects have
recognized the need of developing higher level wrappers on top of the general purpose frameworks.

Wewill seein the following discussionsthe reasons for that.
CORBA-based or CORBA-like options are now rather widely spread.
LabVIEW and DDS are emerging are strong candidates.

A number of mgjor projects now in their first stages of design do not have yet adopted any framework but they
are still evaluating among the available and emerging options.

22



VLT/ALMA Source Lines of code
(SLOC)

9.000.000

8.000.000 o
B Pipelines
7.000.000

6.000.000 B DFS Back-end

5.000.000 DFS Front-end

4.000.000
B Instruments/Correlat

3.000.000
B Telescopes/Antenna
2.000.000

1.000.000 Framework

VLT ALMA

0

This diagram compares the lines of code currently (beginning 2008) in the VLT software and in the ALMA
software.

The two projects are in completely different stages of development, being the VLT in full operation and
ALMA just at the very beginning of its commissioning.

It should also be taken into account that the VLT includes control and pipeline for many instruments, while
ALMA has essentially only one, the correlator.

Neverthelessit is possible to make a couple of interesting observations.

1) First of all, the code implemented for the ALMA framework (ACS) is much smaller than the VLT.

Our analysis ascribes thisto the fact that ACSis extensively using the CORBA infrastructure provided by
public domain distributions:. alot of the features provided by the VLT Common Software are already provided
by CORBA.

2) The SLOC for the Telescope/Antenna Control is much lower.

We think thisis due to the fact that we are leveraging a more advanced basic infrastructure, better
programming languages and more modern design and architecture patterns.

When a new project starts, there is aways the dilemma between adopting awell known, old and proven
infrastructure or a new one, unknown but technologically more advanced and promising higher devel opment
efficiency.

The advantages and disadvantages of the two approaches have to be carefully weighted and the decision
depends alot on projects specific parameters.

We will try to discuss some of these parameters during the day.



WSF code generation

PRIMA 12 21 72 24004 21.24
APE 12 36 105 35020 25.08
NGC 4 17 34 16021 17.31
DL 1 26 68 24391 18.55

L.Andolfato, 2008
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The Workstation Software Framework (WSF) is a state machine model driven development toolkit designed to generate
event driven applications based on ESO VLT software.

State machine models are used to generate executables.
Thetoolkit provides versatile code generation options and it supports Mealy, Moore and hierarchical state machines.

Generated code is readable and maintainable since it combines well known design patterns such as the State and the
Template patterns. WSF promotes a development process that is based on model reusability through the creation of a catalog
of state machine patterns.

Thefollowing projects have used WSF to devel op workstation applications:

*Phase Referenced Imaging and Mirco-arcsecond Astrometry (PRIMA) facility for VLTI.
Active Phasing Experiment (APE).

*New General detector Controller (NGC).

*Delay Line Control Software: maintenance and alignment application for Delay Lines (DL).

PRIMA has been atest bed project for WSF. The size of the project (12 new processes spread on four workstations) and
different types of applications required (control loops, configuration and coordination of real-time processes running on real-
time platform, broadcasting of commands) have allowed tuning of the framework until a stable version could be released to
other projects.

The effectiveness of state machine model reusability has been proved with the APE project where similar applications were
developed to control four different wave-front sensors. Out of 12 APE workstation applications, four are dedicated to control
the calibration of the sensors and acquisition procedures and four to process the data produced by the sensors. The four data
processing applications share exactly the same state machine model. Only some of the actions and data structures are
different. The control applications share most of the state machine model and some of the actionsin order to configure
devices common to all sensors.

Finally the NGC project gave the opportunity to compare two applications sharing the same functional requirements but
developed with and without WSF. The New General detector Controller software is the successor of FIERA offering
additional functionalities. FIERA was developed before WSF was available and counts 51412 lines of code. The portion of
NGC covering FIERA functionalities sums up to 51234 lines of code. The interesting fact is that while the total amount of
code is the same, only 11% of the 51234 lines of NGC code has been written by the developer.

The table shows that the percent of code written by developers (mainly actions and data classes) in different projectsis on
average below 30%.

Thetoolkit is presented at this conference:
Workstation Softwar e Framework, L. Andolfato, R. Karban
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On the same path:
common technical trends

+ Common architectural concepts and terminology across many
telescope projects

* Less reliance on 'home-grown' software, particularly in
infrastructure

+ Common software across entire observatories
+ More distributed control using cheaper hardware: PCs dominate

+ Control based on distributed, often off-the-shelf, devices on a
field bus or Ethernet.

+ Real Time Linux or VxWorks.
« More Java, less C/C++
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Thanks to the open communication and interchanges between the major projects (for example collaborations and
cross-participation to reviews), our community is moving toward common concepts and a common terminology.
The architecture of the various projects looks more and more similar and consistent. When we talk together we
can easily understand each other and we can share design patterns and architectura solutions, if not actual code.
Thisis potentially a big advantage also for small projects, that can reuse this common architecture and solutions.
There are a number of common trends that can be recognized in many of the newer projects.

Some are listed above and could be discussed at length.

In particular there is a general tendency to adopt at as much as possible existing infrastructure software, trying
to concentrate the in-house devel opment efforts into domain specific issues.

The control strategy is aso changing radically . More and more industrial control devices are available at low
cost and can be easily controlled via a standard field busline CAN or via Ethernet.

At the same time, the size of the machines controlled by the big projectsisincreasing. This putsin aweak
position the three-tier architecture common to all major facilities in operation, based on:

*High-level coordination systems

L ow-level real time control computers (LCUs)

*Devices with limited degree of intelligence
Real time is more and more distributed on the intelligent devices and they are controlled by (soft real time)
computers coordinating their work by means of afield bus. Thisallowsto distribute devices al over abig field
with much less cabling constraints and with much softer real time requirements on the coordination side.
At the same time new projects are coming with new common challenges:

«Synchronized multiple distributed control 1oops (wave front control)

*Multi-level off-loading schemes

Fault detection, isolation and recovery (E-ELT M1: 1000 segments with actuators and sensors)

*Operational efficiency (TMT requirement: on target in <5 minutes).
These considerations have an impact aso on the selection of programming languages: low level control in the
devicesisdonein C or using dedicated languages, for example for PLCs, while on the high level Javais

completely replacing C++, because although less performing it allows to produce much better and more reliable
code. C++ flexibility is perceived by devel opers as not needed on the field devices.
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Collaboration initiatives

There are many opportunities
for collaboration:

— New big projects ramping up

— New challenges, many
common across p['Q]CCIS
We are getting used to
collaborations thanks to big
international projects (like
ALMA) and open source

We have started a collaboration
between observatories.
In this conference:

— Paper: Enabling Technologies
and Constraints for software
sharing in large astronomy
projects

— Round table: creating an open
software community for

observatory control and

initiatives. ; ; e
operation: Is it possible? Is it
worthwhile?
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There are many areas where collaboration and cooperation between observatories or, more in general, scientific
experimental facilities, might bring major advantages.

The area of infrastructure frameworks is a very promising one, as demonstrated by the EPICS collaboration in
the particle accelerators community and, on a much smaller scale, ACS for radio astronomy and TANGO for
synchrotron accelerators.

Thisisagood time for collaboration in astronomy because there are a number of major projectsin the startup
phase and therefore there is the potential for strong synergies. All these projects share a set of new challenges on
which it would appear useful to work together.

We are also getting more and more used to collaborations between observatories, thanks to the big international
projectslike ALMA and open source initiatives.

Recognizing these facts, we have started about one year ago a collaboration between different observatories that
has for the time being produced alot of useful discussions, a couple of conference papers. One will be presented
at this conference. We have also decided to organize a round table discussion in this conference to see what
practical collaboration initiatives we should and might be able to put in place. This collaboration includes people
from ESO, W.M.Keck Observatory, Gemini Observatory, ALMA, ATST, LSST and the Thirty Meter Telescope
and we hope to extend the participation to other projects/observatories.
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Questions (& Answers)

o)

| 3
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4 — Distributed systems and Middleware

SPIE 2008 — SC-644,
G.Chiozzi

An Introduction to Scalable Frameworks for Observatory
Software Infrastructure
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Distributed System

» Requirement: the observatory is a
distributed system.
Servers and clients are distributed on
different machines:
— Possibly in different locations
— With different purpose and functionality

— With different requirements on performance
and reliability

This actually implies an.....
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As can be seen from the previous discussion, the architecture of the observatory is very distributed.

Servers and clients need to be distributed in different locations inside and outside the physical observatory
where the telescope reside.

The different parts of the system (that we did not better specify yet) have different purpose and functionality and
therefore have different requirements on performance and reliability.

If we take into account that parts of the system are dedicated to real time control of hardware, coordination,
database management, data analysis up to the GUIs on the astronomer’ s desktop, we see that this distribution
involves something more than a plain Distributed System.

29



Heterogeneous Distributed System

o,

heterogeneous distributed system;
servers and clients may use different:
— Hardware

— System software

— Programming languages
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What we redlly have is an Heterogeneous Distributed Systems, since the distribution involves different:

*Hardware platforms and architectures. From real time computers to PCs of any kind on the desktops, we can
have very different hardware architecture (CPU, word size, alignment, memory available...)

*System software. Any of these machines can have areal time operating system, Linux or other variants of
Unix, Microsoft operating systems, MacOS or even more exotic software platforms like PalmOS

*Programming L anguages. Different programming languages are more suitable for different application
domains. For example, C and C++ are most suitable for real time and CPU intensive applications, while Java fits
well in coordination, high level or GUI developments. Astronomers will want to write their observation scripts
and reduction proceduresin high level scripting languages.
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Transparent Heterogeneous
| Distribution |

* Separation of Concerns:

— Developers of clients and servers have to be
unaware of the respective architecture

— It shall be possible to change the architecture of
a server transparently to the client

— Ideally the developer of a client should not even
know if a server is local or remote.
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In order to achieve the “ separation of concerns’ objective, applications devel opers have to be unaware of the
architecture (hardware, software, programming language, location) of the servers they interact with.

Having to deal explicitly with network communication protocols, byte order of message data, connection
reliability and similar problem would be a major burden on the shoulders of the application developer.

The technical framework has to take up this responsibility and hide all these problemsto the functional
developers.

It shall even be possibleto fully replace the server with a different one without the client noticing.

We could (and this has been often the case in past projects) keep the heterogeneous domains separate. For
example data analysis and control system could be implemented using different and independent software
infrastructures, but this approach will lead to many problemsin the interfaces. In the past, interfaces were
limited and this was not an important issue. But the level of integration needed nowadays makes such a choice
highly problematic.

Theinfrastructure Framework has to take care of these aspects of the system.
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Location Transparency
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Our framework should provide (re-)location transparency:

« an object can be local to your process, in another process on the same
machine, or in another process on another machine

« but a client should not need to be aware of the real location of the server.
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We keep our architecture easier and much more flexible if we can rely on amiddleware that provides|location
and relocation transparency.

The developer of a client application should interact with a server asif it was alocal object, not even knowing if
itislocal or remote. Remote function calls should resemble local function calls.

Using directly low-level network protocols from the application layer (for example using send and receive on
socket based communication) does not allow to reach these objective, because the application software hasto be
fully aware of the network protocols and communication. This code is typically non highly scalable and hard to
maintain and change.

Thistransparency makes it much easier to scale systems and optimise performance by re-deploying Servants on
separate processes and hosts or repackaging together Clients and Servants that have frequent interactions.

Clearly there can be location constraints. For example two objects might HAVE to be collocated in the same
process or host because they might need to access directly the same resources or for performance reasons. An
example is a data reduction pipeline where two pipeline stages need access to a shared file with the best
reachable performance. But in most case a proper design of the system’s architecture allows to avoid or reduce
such dependencies.
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Middleware is a software layer between the
application layer and the network services
and provides:

« Heterogeneous communication transparency

» Location transparency

» Message delivery and format integrity

« Dynamic invocation of server processes

* Load balancing

» Security
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A special layer of software between client and server processes is needed to deliver the extra functionality.
This software layer iscalled middleware. It hides the complexity of the extra functionality behind a common
set of APIsthat client and server processes can invoke.

Network protocol functionality only allows data exchange between client and server. More functionality is
required for heterogeneous distributed systems, like:

L ocation transparency

The application does not want to know the network address of the client it wants to use. A location (naming) service should
allow to locate a service over the network by name and/or required functionality.

*Message delivery and format integrity

The system must warranty that messages are not lost or duplicated and that they are delivered uncorrupted.

*Dynamic invocation of server processes,

The client shall not be responsible for starting up the servicesit need, but the system shall be able to do it transparently
L oad balancing

If needed, the system shall be able to redistribute the services to allow load balancing over the distributed servers
eSecurity

If needed, the system must be able to handle security of communication using appropriate secure protocols. But without
enforcing heavy communication protocols where there is no need and/or performance would be an issue.
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Object Middleware

* Most used development technologies and
programming languages are Object Oriented:
— Implement objects
— Call operations of objects

 (all local or remote objects transparently:
— Client and object vs. client and server

* Object Reference:
— first get one,

— then use it.
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Object Oriented concepts are pervasive in current software development: essentially all development
methodol ogies and programming languages used nowadays are to some extent Object Oriented. Even scripting
languages like Python provide support for Object Orientation.

Developers are used to think in terms of objects and object oriented programs are based on one side on the
implementation of objects (define a class and implement it) and on the other side on clients invoking methods
provided by instances of objects.

It isvery natural to extend this concept outside the boundaries of a programming language or of a process on
one host.

Object Middleware allows to call operations of objects that reside on other systems and are possibly
implemented in other languages.

The objective isto make as transparent as possible to the developer calling alocal or aremote object.
We replace the client/server model with a client/object model.

In order to be able to access and object, you first must get an “object reference” pointing to it. Calling alocal
object through a pointer or a remote object through a reference are made to look the same. Task of the Object
Middleware isto provide mechanisms to implement and retrieve the references for remote objects and to locate
the objects over the distributed system.

We will see how this can be done in the examples.
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| Object Interface and OO concepts
* Interfaces: strong emphasis

— Clients only look at interfaces

— Interface Definition Language

— Decoupling from implementation

* Encapsulation, inheritance and

polymorphism
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A client isonly concerned with the “interface” of the objects it interacts with.

Object Middleware puts a strong emphasis on the concept of “interface”. Typically alanguage neutral Interface
Definition Language is used to define interfaces and a strong decoupling between interfaces and implementation
alows:

*One object to support many interfaces

*One interface to be implemented by many objectsin different ways
The concept of interface provides a strong support for encapsulation.
Independent inheritance is typically supported on the side of interface definition and object implementation.
Polymorphism comes naturally from the separation between interfaces and implementation.

Actualy, thinking in terms of separation between interfaces and implementation helps alot in grasping the
fundamental OO concepts. Thisis amajor advantage of Java with respect to C++ from the language definition
point of view (pure virtual declarations in C++ can be used to emulate interfaces, but are not conceptually
equivalent).
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Alternative or complementary?
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Object-oriented components interact with one another principally by method calls, which represent a transfer of
control (delegation).

This approach can be compared with a data/actor oriented architecture, that some consider more appropriate for
large distributed real-time control systems.

Following a data oriented approach, components work as independent entities that receive data from other
components, react on them and publish data asynchronously and concurrently to other components. The object
oriented approach fits well to client-server applications while the actor oriented definition fits well to publish-
subscribe applications.

In my opinion (based on preliminary experience coming from the analysis and prototyping we are working on
for the E-ELT), the two approaches are not alternative but rather complementary: there are areas where an
object oriented approach bringsto a much easier architecture and implementation than an data oriented approach
and the other way around. It is always possible to implement everything with one of the two paradigms, but this
brings to an increase of complexity where we have to stretch the paradigm to make it fit all purposes.

| therefore think that it is often better to have available both options and thisis actually what happens in many
situations.

| will try to give some examples later on.
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Middleware: Buy, not build!

» Avoids need to write communication
infrastructure in-house
— Less effort
— Less in-house expertise required
— Access to outside expertise
— Benefit from wide-spread use
 Often provides rich set of features

* Lots to choose from (both commercial and
public domain)
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The software infrastructure for an observatory shall be built on top of an (Object) Middleware.
But there is no point in developing a new one: there are various available on the market and it is just a matter of
picking the right one.



Obiject Middleware

| i A

« Common Object Request Broker Architecture
(CORBA) from the Object Management Group
(OMG)

* Internet Communications Engine (Ice) from
ZeroC

* Enterprise Java Beans (EJB) and Java Remote
Method Invocation (Java RMI) from Sun
Microsystems
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Model (DCOM) from Microsoft
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Four dominant examples of Object Middleware Systems are:

*CORBA:; http://www.corba.org/

*| CE: http://www.zeroc.com/ice.html

*Enterprise Java Beans (EJB) and Java RMI: http://java.sun.com/products/jdk/rmi/
«.NET and DCOM: http://www.microsoft.com/com/default.mspx

We will base our examples on CORBA.

There are many parameters to drive the choice, depending on the requirements of the system under
development:

*Open or closed standard

*Opens source versus commercial implementation

*Multiple vendors

*Market share

*Costs

*Number of architectures, operating systems, languages supported.

For ALMA we have decided to adopt CORBA because we think its characteristics make it the most suitable for
the development of a software system for alarge international and open collaboration in the scientific
community:

*Very open standard, not controlled by specific vendors

*Wide availability of high quality open source implementations

eIntrinsically operating system, architecture and language independent.

*Vendor interoperable by design, i.e. applications from different vendors will work together

We are happy of this choice and we can state that CORBA maintains what promises.
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‘ Alternative middleware system:

Alternative, non-object, middleware systems can be
considered:

— Data Distribution Service (DDS)
— NI LabVIEW
— OLE for Process Control (OPC)

SPIE 2008 — SC-644, An Introduction to Scalable Frameworks for Observatory 39
G.Chiozzi Software Infrastructure

There are also alternative middleware solutions different from what we have called “ object middleware
systems’.

While the object middleware systems listed in the previous page provided a consistent and quite similar set of
features and services and are based on the same high level paradigms, these aternative solutions are quite
different. Very often it is not possible to consider them as “middleware systems’ at the same level of the
previously mentioned ones, since they provide rather different sets of features. Actually very often we can think
of using them effectively together as complementary to an object middieware to solve specific categories of
problems.

DDSisavery interesting emerging specification from the Object Management Group (as well as CORBA and
in parallel to it) based on a data oriented paradigm instead of object oriented.

A number of projects, including the E-ELT, are looking into DDS and we will spend some time later on
analyzing the basic concepts and some important aspects in particular in relation with CORBA.

National Instruments LabVIEW isagraphical programming system that was originally designed for test and
measurement applicationsin alaboratory or industrial environment, including data acquisition, data analysis,
and instrument control. Programming an application in LabVIEW isvery different from programming in atext
based language such as C++ or Java. LabVIEW uses graphical symbols (icons) to describe programming actions
and execution is driven by the data flows wired into a diagram. Since LabVIEW is graphically based, many
engineers and scientists who would not normally write their own software can get useful results easily using
LabVIEW. It can be avery efficient tool when used by experienced LabVIEW developers: the SALT telescope
project claims that use of LabVIEW reduced their software development time by 70%.

The OPC standard is based on Microsoft specification and runs essentially on Microsoft platforms.

It specifies an interface between client applications and servers of process data. The standard was purposely
limited to the reading and writing of process values. Alarm handling, process events, security, batch structures,
and historical data access were all deferred to subsequent releases of the standard. An OPC compliant client can
read and write data to any OPC compliant server. OPC is based on the OLE/COM standard from Microsoft.
OPC provides for a high degree of interoperability between client and server applications supplied by different

vendors.
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‘ What is CORBA

| o |

CORBA is a standard, not a product
Common Object Request Broker Architecture
(CORBA)

— A family of specifications
— OMG is the standards body
— Over 800 companies

CORBA defines interfaces, not implementations
CORBA core and services
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First of all we haveto say what CORBA isn’t: CORBA isnot a product, but rather a standard specification. The
OMG isthe standard body for the specification of CORBA (and of UML) and is a consortium of the most
important software vendors.

For this reason CORBA specifications define only interfaces and not implementation.

Any vendor should be able to provide an implementation based only on these OMG interface specifications and
thisimplementation should be interoperable and usable together with the implementation of any other vendor,
provided that both comply with the same specification level.

Reaching such an interoperability requires unambiguous and complete specifications. Thistypically requires
variousiterations. After some initial glitches (like the design of the Basic Object Adapter — BOA — later on
superseded by the Portable Object Adapter) the core components of CORBA are now extremely stable and
interoperable.

The latest additions and the higher level services till need some iterations to reach the same level of stability
and interoperability.

In ALMA and the Alma Common Software we are currently using 5 different open source CORBA
implementations:

*TAO for C++

+JacORB for java

*Omni ORB for Python

*Mico for itsimplementation of the Interface Repository service

*Open ORB for itsimplementation of an extensible IDL compiler used for code generation

We have also used in the past Orbacus and the native Java JDK ORB and replaced them with one of the ORBs
previousdly listed and we have switched the implementation of some services from one ORB to another, to use
the one better fulfilling our needs. And we can use the documentation, manuals, books relative to any of them to
learn how to use best another one. Thisis a very good demonstration of interoperability.

When we discuss of CORBA, we should always keep in mind two levels:

*CORBA core functionality isthe set of basic com?onents (likethe IDL language, the Object Request Broker
?rllwd the I1OP communication protocol) that warranty interoperability. Every implementation has to support
em.

*CORBA services are additional (but often fundamental) services that are built on top of CORBA by the vendors
that want to provide them.
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Summary: requirements and core CORBA

— No need to pre-determine:
* The programming language
» The hardware platform
* The operating system
» The specific object request broker
* The degree of object distribution
— Open Architecture:
* Language-neutral Interface Definition Language (IDL)
» Language, platform and location transparent
* Interoperable
— Objects could act as clients, servers or both
— The CORBA infrastructure (the ORB) mediates the interaction between
client and object
— Scalability designed in CORBA specifications
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Here | summarize once more the main design goals and characteristics of CORBA.

Many of these items have been listed already as common to all mgjor object middleware technologies, but |
have marked in colour (italics, for B&W print) the ones that are more specific of CORBA and that many

“competitor” technologies do not take into account.
These goals map well with the requirements that have led us to identify the need for adopting a Middleware.

CORBA isdesigned for scalability and analyzing the architecture of the basic CORBA infrastructure allows to
understand how this scalability can be reached.

See the slidesin the “additional information” section for details.
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The decline of CORBA?

» Main reference on the topic:
The Decline of CORBA
June 2006 article in ACM Queue by M. Henning
* Clearly CORBA is declining as a generasl purpose solution

* In distributed control, real-time and embedded
applications, CORBA is still surviving and growing
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The most negative prediction about the future of CORBA isthe article The Decline of CORBA published in the
June 2006 article in the Magazine ACM Queue by Michi Henning. He predicts the death of CORBA and
describesit as having now become an * obscure niche technology that is all but forgotten”. This paper has
become influential by being widely reproduced and quoted on the Web. Henning was a leading expert and
advocate of CORBA serving on OMG committees and co-wrote one of the standard CORBA programming
texts. Heis currently a master brain behind the | ce software system, a middleware solution that isarival of
CORBA

There are other signals of CORBA decline as a general purpose middleware;
* Declining number of publications

* Software recruitment

* Web search trends

The situation has been reviewed in the Evaluation of the ALMA Common Software
as a Softwar e Framework for the E-ELT TCSdone for ESO by OSL.

The decline of CORBA as agenera purpose solution appears as almost inevitable given the competition with
Web Services (based on SOAP, XML and WSDL) as the ultimate software solution for distributed software
interaction over the Internet.

However market research clearly show that in particular domains such as distributed control, real-time and
embedded applications, CORBA is still surviving and growing. New CORBA based products have been
developed in recent years. The demand for embedded CORBA has been driven by user requirements for
flexible, distributed embedded solutions especially in the telecommunications and defense industries. CORBA
based software solutions

are now available for use on FPGAs and DSPs.

CORBA may be less fashionable and it has its faults, but in the software application domains that concern usin
this study - distributed control, real-time and embedded applications - CORBA isfar from dead.
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Questions (& Answers)
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A questions and answers session is the best way to clarify this choice before using CORBA as a practical
example to describe more in details the characteristics of an Object Middleware.
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Interfaces vs. Implementations

» First step in design: Identify objects

— Mount

Interface Ea '\
~ CCD 5

Telescope
Observation

Exposure - /

* Second step: Define interfaces
— We need a formal interface definition language
— Implementation will come later and is independent from interface
— Deployment is also independent from interface definitions

— Interfaces shall be kept as stable as possible, but it must be
possible to have them evolve when needed.
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Asafirst step in the analysis and design of the system we have to identify the objects that will interact together.
Typicaly thiswill be donein layers.

Per each subsystem we will identify the outer layer of objects that will be used in the interactions between
subsystems.

Going deeper in the analysis we will identify recursively internal layers of objects.
Once the objects have been identified, we will have to define their interfaces.
At this point we should not care about implementation and deployment.

It shall be possible to implement the interfaces later on using different programming languages and different
architectures, as well as deploying the implementation in different ways.

The absol ute separation between interface and implementation is essential to interoperability and scalability.

The best way to define interfaces if by using an implementation neutral but formal interface definition language
that will be mapped in the implementation languages later on. Using aformal language is very important to
avoid surprises and inconsi stencies when integrating subsystems developed by different teams. Using just a
textual Interface Control Document (ICD) can very easily lead to problems.

The clients of an object know and see only itsinterface and the interface shields completely the implementation
underneath.

Thismakes it possible first of al to implement a servant in any language.
But it also means that it is possible:

*To have different implementations for the same interface, if needed in multiple languages.
For example one could provide a mock up implementation in Python for testing and an high performance
servant in C++ for the final real time system.

*To have one implementation serve multiple interfaces.

For example, access to legacy system could be done defining the interfaces for each subsystem but
implementing only one generic servant (for example a sort of protocol converter) able to implement all of them.
Another example is a CORBA interface to access a object (or aso relational) database. It is not necessary to
provide the implementation for each object type (or table) in the database. One single implementation is able to
“incarnate” dynamically all interfaces.

*To have one physical instance of a Servant to represent multiple logical instances. Or the other way around. Or
any intermediate situation, based on scheduling and load balancing algorithms.
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Interface Definition Language: IDL

CORBA provides a formal interface definitions language called IDL
IDL forms a ‘contract” between client and servant.
» IDL reconciles diverse object models and programming languages

* Imposes the same object model on all supported languages

* Programming language independent means of describing data types and
object interfaces

— purely descriptive - no procedural components
— provides abstraction from implementation
— allows multiple language bindings to be defined
* A way to integrate and share objects from different object models and
languages
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CORBA specifies an Interface Definition Language. IDL isan 1SO standard. Actually IDL isagenera interface
definition language used to specify interfaces also in environments that are not using CORBA at all.

Rather than inventing a new language, it is a good choice to take an aready existing one that has been in use for
long time.

Part of the IDL specification is also aformal mapping from IDL to any supported programming language and
the other way around. There are for example mappings from and to IDL for C, C++, Java, Python, TCL and
many others.

This has the great advantage of reconciling different object models and programming languages allowing them
to easily inter operate.

But on the other hand forces some compromises, in particular since some of the supported languages are not
object oriented.

For example,

«IDL supportsinterface inheritance (actually, multiple inheritance) but does not allow overloading, i.e. it does
not allow multiple operations with the same name but a different signature. Thiswould not be possible to
implement in an easy and intuitive way in the C mapping.

*IDL supports Exceptions, but not inheritance between exceptions

IDL has also important limitations in the specification of interfaces. IDL 3 addresses a number of these
limitations.

For example:

*IDL 2 only specifies the definition of published interfaces.
To build amodel of the interactions between objects it is useful to be able to specify aso:

*Required interfaces
*Published event
*Subscribed events

*The specification of an interface consists only in the signatures of the methods, but not in the pre/post
conditions.
For example, it is not possible to specify ranges for parameters
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IDL Example: Mount

#ifndef ACSCOURSE MOUNT IDI
#define ACSCOURSE MOUNT IDL

#include <baci.idl>
#pragma prefix "alma”

module ACSCOURSE MOUNT

i
1

interface Mount : ACS::Component

oid objfix (in double az,
in double elev);
readonly attribute long status;
readonly attribute ACS::ROdouble emdAz;
readonly attribute ACS::ROdouble emdEl;
readonly attribute ACS::ROdouble actAz;
readonly attribute ACS::ROdouble actEl;

#endif
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This slide shows a small example of IDL file, representing an abstract (and extremely simplified) telescope
mount.

ThisIDL file defines an interface called Mount that provides:

~one operation called objfix(az, el) to send the mount to a specified azimuth and elevation
one attribute of type long for the status of the mount

«afew attributes that are complex CORBA objects themselves

Asyou can see, the structure of IDL isvery much taken from C++ include files and even relies on the standard
C pre-processor (athough some non C++ ORBs like JacORB only provide in practice limited support for pre-
processing directives).

The IDL syntax only allowsto formally define signatures for operations and attributes with types and names of
parameters.

Thereisno formal provision for describing characteristics of a parameter like ranges or more in general aformal
“design by contract” specification.

Thiswould be actually very interesting and IDL could be augmented with comments describing such constraint
using OCL (Object Constraint Language, still part of OMG “products’ together with UML).
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Object versus Data interface

* Mount is an object interface: we have the objfix() method

* With DDS we would define the target data structure

* DDS uses IDL as well as CORBA to define data interfaces

* CORBA component model allows to define events as well
as methods

* What would be the + and — of a data interface versus and
object interface?
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What we seein the previous exampleis atypical object interface:

» The Mount component has the method objfix(az, el) to be sent to afixed position

« It also defines some data members that can be used to see the status of the object.

Ina“pure’ data oriented approach, for example with DDS, we would instead define the target data structure and say that:
» Somebody publishes the data

* The Mount listens at this data and goes to the requested position

Notice that in both cases with CORBA and DDS the IDL interface definition language would be used.

We are in both cases specifying an interface between components, but in a quite different way.

The data driven approach seems much more decoupled, because thereis no client calling explicitly the objfix() method of the
Mount server.

Thisworks extremely well when the are components (possibly many) publishing continuously data to be used by other
components (possibly many).

A good example is when the enclosure of atelescope needs to follow the position of the mount:

* The enclosure listen at target data that gets published

» The mount component publishes periodically its own position whenever it moves

But what it, for example during daytime tests, you want to park the enclosure but still move the mount?

The easiest seem to have an explicit command that you can send synchronously to the enclosure: objfix(), move there and do
not move any more.

For sureyou can do it also in a data oriented way, for example publishing a different data type (topic) that is received by the
mount and interpreted as “ go there and stop”.

But this is somehow “command emulation”, spoils some of the beauty of the data centric paradigm, adds and hides coupling
between the components, increases complexity because of the need for synchronization.

Allinall itis probably better to have an hybrid system where:

» Commands are used for changing states and ask the component to perform “fire once” actions

« Datais used for continuous feeds and monitoring

Depending on the specific functional requirements it might be better to use one or the other paradigm.
Thisis recognized by the fact that:

» CORBA provides data and event mechanisms

* OMG has specified both CORBA and DDS

» DDS implementations always provide integration with CORBA
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Development Process Using IDL
Client Object

Implementation Implementation

Client Object
Program Implementation|
Source Source

Ohject Tmplementation
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When thinking about the IDL language definition, it isimportant to think that IDL is alanguage to define INTERFACES and

not IMPLEMENTATION. For example thereis no point in implementing such things as:

eprivate operations or attributes

because what is private in Javaor C++ is“hidden inside the implementation” and, therefore has no placein the interface
eoperation overriding, i.e. redefining the same operation in a sub-class with a different behaviour, since the behaviour is
again domain of the implementation.

It is quite common to confuse interface and implementation aspects.

This diagram shows how an IDL definition is used in the code devel opment process.
*The DL fileis processed by one or more IDL compilers
*Each IDL compiler can produce:

+Stub code
The stub code is the code that a client hasto call to invoke aremote CORBA object.

*Skeleton code
The skeleton is the code that has to be used as the bases for the implementation of the servant.
So the development process can be seen through the following steps:
*TheIDL interface is defined in agreement between the devel opers of servants and clients and published as the contract
between them.
*The developer of the servant:
«chooses an implementation language (for example C++)
selectsa CORBA implementation for that language (for example TAO)

eruns the agreed IDL through the IDL compiler and obtains a Skeleton. In the C++ case, thisis an abstract C++
class mapping al operations and attributes of the class into abstract methods

esubclasses the skeleton and implements all abstract methods
*The developer of the client:
«chooses an implementation language (for example Python)
*select a CORBA implementation for that language (for example OmniORB)

erunsthe aﬁ;reed IDL through the IDL compiler and obtains a Stub. In the Python case, thisis a python class
mapping all operations and attributes of the class

«simply calls the stub methods.
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Narrow vs. Wide Interfaces

» Wide interface: explicit Wide interface:

method call » Compile time safe
— Mount.objfix(az, elev)

» Narrow interface: generic

+ Self documenting
* OO inheritance support

methods :
— Mount.setup(*“objfix,5,10”) Narrow interface:

- CORBA/ACS support » Compact and generic

both, but a wide interface  * Complex setup handled

comes natural easily

* Decoupling in hierarchy
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Thereis always a strong, sometimes religious, debate between supporters of wide versus narrow interfaces.
The mount example in the previous didesis atypical example of wide interface:
-An explicit method with parametersis defined per each functionality provided by the component.

A narrow interface providesin contrast a few standardized methods with a fixed signature that allows to pass (very often as
strings) the description of the required action in a generic way.

For example a narrow interface could provide the same functionality of the objfix() using a generic setup method:
-Mount.setup(“ objfix, 5, 10")

CORBA supports both approaches (you can aways define the setup() method), but the features of the IDL language bring
naturally to adopt awide interface.

For example ACS is normally used with the wide interface model and thisis what we have always suggested.

But TANGO is another CORBA based infrastructure framework used in the synchrotron community and relies heavily on the
narrow interface paradigm.

Both approaches have advantages and disadvantages and often the best choice depends on the application or even on the taste
of the developers.

A significant advantage of the wide interfaceis, that the explicit method call on objectsis safer, as many errors are
discovered at compile-time by the compiler automatically.

In awide interface system, the interface definitions of the objects are also the documentation and it is easy to know what is
made available by a component just by looking at its interface specificationin IDL.

A wideinterface implemented in CORBA can aso rely on OO inheritance to extend already defined interfaces and to enforce
aproper inheritance hierarchy.

On the other hand, anarrow interfaceis compact and generic and it is normally perceived as simpler by the users.
The major advantages are:

-Complex setup handling. The setup of devices and instruments in control systems takes often very many parameters.
Specifying so many configuration parametersin the signature of a method is inconvenient and difficult to maintain. It is
normally much more convenient to pass to a generic setup method a configuration file with (name, value) pairs.

- Decoupling in hierarchy. When a device is composed as a hierarchy of sub-devicesin most cases atop level configuration
command is sent to the head of the hierarchical tree and then propagated to the sub-components. If al configuration
parameters are specified in the signature of the interfaces, a change in a sub-component requires a change in the interface and
often in the propagation code of all super-nodesin the hierarchy. Also in this case a generic setup command is of good help
in maintaining decoupling.

Many claim also that a narrow interface has the advantage of allowing developing generic applications. Thisis actually not
correct, because both CORBA and modern languages like Java provide introspection and dynamic discovery, alowing the
development of generic applications also on top of awide interface. We will see some examplesfor ACS.
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6 — From Object to Component Middleware
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Object Middleware shortcomings

» Explicit programming of non-functional
properties

 No standard configuration, packaging and
deployment facilities

Weak “separation of concerns”™

Steep learning curve
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The Object Middleware model described in the previous pages has great advantages with respect to the previous approaches.
But experience has a so shown some important shortcomings and alone it does not fulfil what it promises.

First of all, using directly CORBA still requires alot of non-functional programming.

Middleware specific code appearsin many places, so the developers need to take into account (and learn) the functioning of
their Middleware.

Also, the Object model focuses on the objects themselves and not on a more global view of the system, i.e. how objects are
configured, packaged together and deployed. The developers of applications have to take care of this aspect, again mixing
functional and technical aspects of the architecture.

The Object Middleware model leaves to the full responsibility of the developers the technical architecture of the system.

We have all the elementary building blocks to build our application, but we still need to find out what of these building
blocks we really need in our specific case and HOW to put them together.

All this weakens our capabilities of keeping the desired “separation of concerns’ between functional and technical aspects
and leads to a steep learning curve for the devel opers of functional objects, because they still need to learn alot of the
technical aspects of the otherwise powerful and complete middleware.

What we really need is aframework, i.e. a semi-complete application that based on awell specified architecture givesus a
general skeleton to support our business logic. Clearly, the framework must be able to satisfy the requirements of our
application domain, but at the same time be as close as possible to a“finite” system, since higher flexibility is almost always
associated to higher complexity.
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Container/Component Model

y Container starts

and stops me

and offers its services,
some of which
| don't notice

| only care about
the Lifecycle Interface

O my Components
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Our objectives of separation of functional and technical concerns can be reached “upgrading” from an “ object”
to a“component” Middleware and adopting a Component/Container Model.

A Component Middleware:

*Creates a standard “virtual boundary” around application component implementations. Functional developers
are only concerned by the implementation of their Component code.

*Defines standard Container mechanisms needed to execute Components in generic Component Servers. The
Container provides the whole execution environment and access to services for its Components.

«Specify the infrastructure needed to deploy and configure componentsin a distributed system. Components can
be re-configured and moved around in the system without affecting the Component itself or other clients or
servants. Configuration and deployment become a separate concern from Component devel opment.

Consequences of this approach for functional developers are:

*Easier learning curve and reduced skill requirements: focus expertise on domain problems.
Scalability taken care of by the Container and tuneable at deployment time

*Better adaptability and maintainability, with general reduced complexity.



Component/Container: buy vs. build

+  Major Component models:

NET, EJB, CCM
— .NET binds to Microsoft platform
— EIJB binds to Java programming language

— CCM is still immature and there are just a few free implementations.
Implementations are not interoperable.

»  Off-the-shelf Component Container implementations require a
wholesale commitment from developers to use the languages and tools
supplied.

+ Focus for these Component/Container impiementations are big
enterprise business systems

» For ACS we decided in 2000 to go for a custom Component/Container
implementation. Recent investigations confirm this choice.

»  We aim at staying as much a possible compatible with CMM concepts
to allow adopting an implementation, when available.

n
n
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Commercia implementations of the Component-Container model are now quite popular (EJB, .NET).

A s\édendor-independent specification, the CORBA Component Model (CCM), is part of CORBA 3 specification, but it is not yet widely
used.

There are some free implementations (for example from TAO and MICO), but they are not interoperable and are limited to one single
Iangléa;ge. The specification still needs to be refined on the basis of the experience with the first implementations; interoperability will come
aswell.

These Component/Container models are rather comprehensive systems, and require a whol esale commitment from developersto use the
languages and tools supplied. In particular,

«.NET binds you to develop in and for the Microsoft world
*EJB binds you to the Java programming language

Once more, only the CORBA CCM really promises vendor, platform and language independence.

At the same time, the focus of these models is on big enterprise business systems and they contain alot of featuresthat are not needed for
our observatory and, more in general, experimental facility environment.

For these reasons when we started to develop ACS in 2000 we decided for a simple custom Component/Container model (that we actually
inherited from the work done for the Control System of the ANKA Synchrotron). At that time, CCM was not even a compl ete specification
and there were no implementations available.

Recent investigations done by other teams have confirmed that this decision, taken back in 2000, is till justified.

Wekeep in any case an eye on the evolution of the CCM and we try to keep as much as possible our system aligned with the CCM
concepts, to be able to switch to an implementation at acceptable costs. As already mentioned, there are very interesting concepts
introduced with CORBA 3 that we would like to adopt.

The choice of developing a custom Component Model is atypical example where the analysis of advantages and disadvantages between
generic and custom implementations has made us decide for the custom solution.

While, in principle, general solutions should always be preferred, our custom implementation has the advantage of being:
eInteroperable

«Lighter and with a smoother learning curve

*Easier to customize to the specific needs of our application domain

In the next pages we will describe the ACS model, but most of what said is applicable to CCM and in abstract to the other Component
Container models.
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Component

)

* Deployable unit of software

* Focus on functionality with little overhead for
remote communication and deployment

* 1...many Components per subsystem

* Functional interface defined in IDL

* Deployed inside a Container

* Well-defined lifecycle (initialization, finalization)
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A Component is the basic deployable unit of software.

It encapsulates a coherent and consistent set of application “business’ login functionalities, defined and exported
to clients by means of IDL interfaces (and textual descriptions for semantic and constraints).

The designer of a subsystem identifies the functionalities to be implemented and partitionsthemin 1 or more
Components.

This partitioning is based on alogical view of the system and leaves out to alarge extent deployment
considerations and technical issues.

The interfaces between the Components of the subsystem and the external clients are defined by the IDL
interfaces in aformal way.

Notice that the IDL interfaces can be used to implement generic or customized simulators effectively helping in
decoupling the devel opment/testing of Components inside the same subsystem or different subsystem.

Once aclient has the agreed IDL interface of a component it needs to interact with, it can use asimulator or a
mock-up to test its own component to a great extent without having to wait for the implementation of the
counterpart.

The Mount IDL shown some slides before is already defined as a Component.

Components will be deployed inside Containers and therefore will have to satisfy afew specific conditions, in
particular about the life cycle, imposed by the need of living inside the Container.
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Container

* Developed by the technical framework team

» Centrally handles technical concerns and hides them from application
developers
— Deployment, Start-up
— Selection of Services, integration with other application specific
Services (Error, Logging, configuration, ...)
— Convenient access to other Components and resources
— Selection and configuration of various CORBA ORBs and
policies; here CORBA alone is much too complicated.
« New aspects can be easily integrated in the future, w/o modifying
application software

SPIE 2008 — SC-644, An Introduction to Scalable Frameworks for Observatory 57
G.Chiozzi Software Infrastructure

The Containers are generic applications that are implemented by the team responsible for the technical
framework, i.e. for the implementation of the Component/Container Model.

They provide the execution environment for the Components and hide from the application developer issues
related to deployment, start-up initialization of the run time environment and the services as well as convenient
access to other Components and system resources.

In principle it would be possible to completely replace the core of the technical framework (for example
replacing CORBA with some newer middleware) simply re-implementing the Container.

Also, new aspects (for example security or command parameter checking) can be easily integrated at the
Container level without modifying the application software.
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Container/Component interfaces

functional
interface: | | - : |
obifix () ponialner service
- ™~ interface
I
s A o
lifecycle /
interface:

init ()
run () _
stop ()
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This diagram shows the rel ations between Components and Containers.
First of all, a Component provides afunctional interface to other Components.

Thisisthe part of the Component that the application devel oper needs to implement to satisfy its own application
requirements.

In ACS the functional interfaceis specified through a standard CORBA 2 IDL interface.
The CORBA 3 CMM specification extends the IDL syntax to allow specifying also:

*What interfaces the component uses, providing therefore a bi-directional specification of the relationships between
Components.

*What events a component publishes
*What events a Component consumes

With these very useful extensions with respect to CORBA 2 IDL specifications, Component specifications can explicitly
express the connections that they offer to the outside world AND what connections they expect the outside world to offer
them.

The Container hides as much as possible CORBA and the underlying architecture to the developers of Components, that can
concentrate on the functional aspects of their specific Component.

We expect to extend the ACS Component/Container to handle CORBA 3 IDL specifications.

Then the Component is bound to implement alifecycle interface. In most cases the application developer can simply adopt a
default lifecycle behaviour by inheritance or delegation from default Component implementations provided by the
Framework.

The division of responsibilities between components and containers enables decisions about where and when individual
components are deployed to be deferred until runtime, at which point configuration information is read by the container. If
the container manages component security as well, authorization policies can be configured at run time in the same way.

Finally, Containers provide an environment for Components to run in, with support for basic services like logging system,
configuration database, persistency and security. A container service interface is defined by the Container for the benefit of
Components to access these services. Developers of Components can focus their work on the domain-specific “functional”
concerns without having to worry about the “technical” concerns that arise from the computing environment in which their
components run.
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Component’s client view

ACS IDL
~ Container functional

(Manager) interface:
/" objfix()

|

2a — invoke c.objfix()

private Mount m_mountComp; .

m_mountComp = alma. ACSCOURSE_MOUNT.MountHelper.narrow(
getContainerServices().getComponent("BBMount"));
m_mountComp.objfix(10,40);
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First of all let’s see the system from the point of view of a Component that need to communicate with another Component.

A Component exposesits IDL interface to clients.

A client (possibly itself a Component) that wants to access the component, needs to ask for areference. The request is done
using the Container Services.

The client is completely unaware of any deployment and lifecycleissues for the Component it wants to talk to.

Oncethe client has areference, can call directly the interface viathe IDL stubs.

Few lines of code (Javain the example) are in principle sufficient to locate the needed Component, connect to it and call its
methods.

Obviously error handling should be taken into account and thisis making the code a bit more complex.
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Interactions
(component activation & retrieval)

CORBA stubs
and skeletons
T = mtairar are everywhere,
- : but not shown...
Container IF Container IF
0
I(og);in (1) ©)
get(“BBMount” activate(“"BBMount”)
returns a reference
to that component
Manager IF
(2) which Container
can run “BBMount™?
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Let’s see what is actually going to happen under the hood.

The ACS model includes also a Manager entity that centralizes deployment configuration, book keeping and system
monitoring functionality.

Keeping these functions outside the Container helps significantly in making the model interoperable and language
independent, since the Container themselves are simpler and can be therefore easily implemented when a new language or
ORB needsto be integrated in the implementation of the Model.

This diagram shows how Components, Containers and the Manager interact.

When a Container becomes alive, it registersitself with the Manager.

The manager is responsible for keeping a runtime image of the system deployment and for monitoring that all entitiesarein
an healthy condition.

The Manager is responsible of object |ocation and therefore plays the role of the CORBA Naming Service (actualy it is built
on top of the Naming Service itself)

Manager and Container interfaces are also described through IDL interfaces and therefore their implementation language and
platform are irrelevant.

Whenever a Component needs another Component, the request goes to the Manager that takes care (using standard CORBA
services, like the Name Service) to locate where and if the Component needs to be deployed and, in case, dynamically
deploysit and returns the reference to the caller.

The Manager takes care also of de-activating Components that are not needed any more in the system.

At this paoint the requesting Component can access its counterpart as needed and be notified by the Manager in case of
problems.

The diagram shows how the communication between Componentsis set up and how it takes actually place.
But from the logical point of view, we can keep two separate views:

*The functional view or the application developer implementing the Component

*Thetechnical view of the administrator responsible for configuration and deployment of the system
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Dynamic invocation

ACS IDL
~ Container functional

(Manager) interface:
/" objfix()

1

2b.2 - Dynamic invocation

2b.1 - Retrieve interface .

Interface repository
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In the previous slides we have described how a Client can statically call methods of a Component.

Alternatively, a client can dynamically discover the interface of a Component by using the CORBA Interface Repository
and using Dynamic Invocation

The Interface Repository isthe CORBA way to provide language independent introspection facilities and can be extremely
useful for the implementation of generic client that cannot or do not want to statically use the stubs generated from the IDL
interfaces.

The ACS Object Explorer is such ageneric client.
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ACS Object Explorer
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The Object Explorer (OE):

* Isageneric tool used for low-level inspection of Componentsin ACS. It can be used as a debugging or testing tool by the
devel opers and maintainers of a system.

« Allows to interact with any Component or, more in general, any object whose reference can be retrieved from the
Manager and whose IDL interface can be retrieved from the Interface Repository.

62



Component’s Administrator View

* An administrator defines - -
deployment by customizing the
Configuration Database for the = -

Manager
* Manager is responsible for e
managing and checking the _'?3:”..2%',{[ '?32’.’.1%’.![
lifecycle of Components T
+ Containers are directly '
responsible for the Components = e
that are assigned to them @E’Dl
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The administrator of the system has a different perspective.
Heisinterested mainly in the deployment:

*Where are Containers running?

*What Components are deployed and deployablein which Containers?
*What isthe status and health of Components and Containers

*Who is using who?

Based on this information, whose static part is kept in a configuration database, it is possible to evaluate and improve the
performance of the system or to recover from error conditions. For exampleit is possible:

*To redeploy Components that have strong and continuous interaction on the same host or Container
*To deploy resource intensive Components on powerful or idle hosts

*Tedeploy critical or unstable Components on a separate Container to reduce damage in case of crash.
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ACS Command Center

Acs Command Center
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The ACS Command Center is an administrative application used to start and stop ACS services, manager and
containers.

It allows to manage the system distributed on several hosts, start tools and inspect the deployment of the system.

Theleft side alowsto control the startup and shutdown of the Services, Manager and Container on distributed
hosts.

The tree on the right shows the run time system deployment and the relations between Components and
Containers.



Tight vs. Porous Container

functional interface is container manages
intercepted by container, Lifecycle and offers
for logging/exception services, but exposes
handling, security, ... the component’s
/ functional interface
L directly — less overhead

N/
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There can actualy be two types of Containers:

*Porous Container

A Porous Container returns to clients directly the CORBA reference to the managed Components. Once they
have received the reference, clients will communicate directly with the Component itself and the Container will
only be responsible for the lifecycle management and the general services the Container providesto
Components, like Logging.

*Tight Container

A tight Container returns to clients areference to an internally handled proxy to the managed Component. In this
way the communication between client and Component is decoupled and the Container has the capability of
intercepting all calls to Components.

Thisallows us to implement transparently in the proxy layer, for example extra security and optimization
functionality or additional debugging aids, at the expense of an additional layer of indirection, with some
performance implication.

For example the Java Container in ACSis atight container and interception is used to provide transparent XML
serialisation of complex data structures.
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Summary: Component Middleware

* Real Framework

» Component-Container based architecture
emphasizes Separation of Concerns in two
dimensions:

— Technical and functional development
— Implementation and deployment/administration

» Scalability

* Maintainability

» Reusability

» Middleware neutral solutions?
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The adoption of an Architecture founded on the Component-Container model is a big step forward in the direction of areal
application framework: the applications are framed inside a well defined technical architecture and a lot of the “do and redo
differently” codeis completely taken out of the hands of the developer.

The Component-Container emphasizes Separation of Concernsin two dimensions:

*Technical and functional development
Itis possible to split the development team based on the skills in technical experts and domain experts and each
developer has therefore a thinner profile.

<Implementation and deployment/administration
Inthisway it is easier to improve the performance of the system and make it scale up while it grows.

Components are also much easier to reuse and plug into the code, since the three contracts clearly specify what they provide
and what they need. It is also often easier to take legacy code and wrap it into Components that can be integrated into the
system independently from the programming language.

Another common argument of debate is how much the framework we use should be “Middleware neutral”. If we adopt a
middleware like CORBA and exposeit in the interfaces used by the applications, we are somehow binding ourselves to this
specific middleware solution. Later on, a migration to another middlieware (like for example could be ICE) will have some
costs, potentially quite high depending on the similarities.

Middleware neutrality come to the cost of:
« implementing a wrapper on top of the middleware to hide it
« limit the features of the middleware that can be used to the once that have been explicitly selected and wrapped.

The ATSTCS for example has fully embraced this policy and is designed to hide completely the underlying middleware. It
can actually work both with CORBA and ICE. ACS has adopted instead a pragmatic approach: try to hide the middleware,
but not strive to hide it completely to:

* save devel opment resources
« alow user to profit from available CORBA documentation/books/training in certain areas
« dlow developers to use additional features of CORBA when deemed necessary.

Itisvery debatableif this was the right approach on the long term. The feeling | have is that the better the middleware can be
hidden, the better it is because a general purpose middleware can do the same thingsin many way and therefore restricting to
alimited agreed set of solutions allow to make their usage much easier. | personally do not believe much in the argument of
being able later on to port the system to a newer and more modern middleware, because a jump in technology usually imply a
switch in paradigm that cannot be easily predicted in advance and taken into account in the generic layer. For example, while
it israther easy to move from CORBA to ICE, as done by ATST, because of their conceptual similarities, it would be instead
very difficult to adapt a system based on the paradigms adopted by CORBA to a pure DDS based middleware. The report
about the adoption of ACSfor the E-EL T already mentioned in this documentation provides more details and arguments for
such a discussion.
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7 — Core services and facilities
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ACS Services

» Every application needs a set of basic services, like for
example: logging, error management, alarms, events.

* CORBA provides a wide set of services

* For ACS we have identified the services essential for our
application domain.

» These have been implemented mostly on top of standard
CORBA Services

* The ACS work consists in wrapping the implementation to
make it easier to use for our purposes.

* We will analyze here some of services provided by ACS
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Until now we have defined an infrastructure to build distributed applications.

We can define interfaces, implement Components, deploy them on Containers and have them interact with each
other.

But the are also a number of very important general services that almost every application will need.
For example distributed applications need:

A centralized logging system

*A distributed alarm system

<An error system capable of propagate errorg/exceptions across the network

CORBA provides the specification for awide set of services, covering very generic requirements or domain
specific requirements (see the appendix for details).

For ACSwe haveidentified the that we think are essential for our application domain.

Whenever possible we have based our implementation on an existing equivalent CORBA service. Our work has
been in this case to identify and implement on top of the standard services the usage design patterns most
interesting for the development of our applications.

In this way we want to make as easy as possible the access to the services for the functional application
devel oper.

New services or new ways of using already integrated services can be added whenever their need becomes
apparent.

Itisalso very important to notice that many services are defined in CORBA in order to warranty vendor
interoperability, so that we can easily replace the underlying implementation.
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Logging System
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A centralized logging system is the most essential service for the operation of a distributed system.
It is also probably the most important debugging tool for a distributed and concurrent system.

Using a source code debugger, it isin fact impossible to debug concurrent issues, because break points and function
stepping heavily affect concurrency.

The standard CORBA Logging Service provides a very powerful and scalable logging infrastructure.
But thisinfrastructureis still too generic for our purpose.

In particular it does not provide any guideline on how to structure the contents of the messages.

In ACS we have therefore decided to structure messages using XML and we have defined an XML schema for the contents
of logs.

Then we have implemented wrapper APIs in the supported languages and a generic server for other clients that make trivial
to use the logging system and generate messages properly formatted according to the schema.

Doing this we have taken into account that Java has a native logging APl and that therefore Java devel opers should have
been very happy of being able to use this standard API to log transparently into the centralized logging system.

Thedriving forces in designing the ACS layer on top of the standard CORBA logging service have been:

«Define how the flexible and generic CORBA logging system shall be used: choose a path for the functional developer
*Make the usage as simple as possible

*Hide native CORBA and make it look like APIs the devel opers are already comfortable with.
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Log message

— several different types: trace, debug, error,...

— timestamp

— runtime: components, thread, process, host, context
— source: file, line routine

— priority: 0-31

— message (text)

— others: identification, stack ID, stack level, ..
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Thisisalist of the most important attributes of alog.

It shall be possible to uniquely identify the message, the place in the code and the runtime context for the
message.



Example of a log message

<Debug
TimeStamp= "“2002-10-7T13:44:16.530"
Host="tel.hqg.eso.org"
Process="MountContainer"
Thread= "main"
Context= """
File="mountImpl.cpp"

Line= "“205"
Routine="mountImpl: :~mountImpl "

>
Component destroyed
</Debug>
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Thisisan example of log in the native XML format.
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An API alowsto write clients of the logging system.
In thisway any application can retrieve logs while they are published.

We have two clients of uttermost importance:
*A GUI client that allows operators to display and monitor logs.

«An Archive Client that receives logs with the purpose of storing them in a persistent archive for later analysis
and retrieval.

ACSitself does not provide any archive, but the responsibility of providing oneisleft to applications.



Error System

* We need a unified way of dealing with errors through the
system
* CORBA supports “distributed” exceptions
* We need more:
— Error format standardisation
— Error handling design patterns
— Error trace
— Error logging
— Synchronous and asynchronous error handling
— Error browsing and definition tools

The ACS Error System provides these features
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It is extremely important to have a coherent and complete way of handling error conditions al over the system.
Thisinvolves handling errors:

«in different programming languages:
an error in a C++ Component has to be propagated and understood by a Java Component

edistributed over the network:
an error in a Component in one host has to be propagated over the network to a client component on another host, possibly
with a different operating system and architecture

CORBA alows defining exceptionsin IDL (with some limitations due to the need of supporting non exception-aware
programming languages) and throwing exceptions over the call to IDL operations. This means that aremote call can throw an
exception that goes back over the wire to the caller and looks the same as alocal exception. The exception’s datais handled
by CORBA and marshalling is therefore transparent.

The possibility of treating local and remote exceptions in the same way is extremely important in order to build transparency
in the distribution of Components, but it is not sufficient.

There are many other issues that we need to solve to allow treating efficiently error conditionsin Components:

*Error format standardisation
A part from the exception “name”, we often profit significantly from additional context information in the data coming with
the exception. But to be able to interpret this information the data structure shall be standardized in the format and contents.

«Error handling design patterns
There are anumber of well proven error handling design patterns (see

: http://www.eso.org/projects/alma/devel op/acs/Releases ACS_3_1/DocsARCUSErrorHandling.pdf). Providing a
standard implementation for these patterns helps alot in writing solid applications.

....continues
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...continues

*Error trace

In a standalone application running in a single executable, alow level error is propagated up through the call
chain until it reaches somebody that is capable of handling it or until the application’is terminated. At each level
useful context information can be added. Some languageslike Java provide native support for retrieving and
manipulating the call chain, but otherslike C++ do hot. ] . i

Tgtls IS Iiheall acktrace design pattern and it is very useful to provide an implementation that works over CORBA
network calls.

*Error loggin

Witha dlgﬁqri bguted system the Backtrace pattern allows to trace the chain of errors across distributed
comdponents, but thé error traces end up al the timesin different places, i.e. where the component that finally
handles them resides. . . . .

It isimportant to have a centralized place where it is possible to browse and search for errors, with context
information allowing to identify where each error occurred.

This can be done sending all error traces to the centralized logging system

*Synchronous and asynchronous error handling ) ] ) o

The exception mechanism works for synchronous calls: the execution of an operation fails, an exception is
thrown and it is caught by the caller. ) L

But in highly distributed systems many actions have to take place asynchronously: an activity is started by a
method call; but the methad returns immediately and later on a callback is used to report the'result. We need to
have a standardised mechanism to report errors'also in such asynchronous situations.

*Error browsing and definition tools ,
It is convenient'to have friendly tools to browse the errors and to define the error structures used to report
context specific information.
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ACS Error System Architecture
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Different middleware systems provide support at different levelsfor such issues, but they cannot provide a comprehensive
solution, betcause they want to be fully general and here we often have some percolationfrom the application domain
requirements.

%AC_TS tfor g)édample provides a solution on top of CORBA to these problems taking into account our Observatory/Scientific
acility needs.

This diagram shows the architecture of the ACS error system.

Essentially we have:

C%eg Ir_;)eAd galeay produce and transport error traces with exceptions and propagate them consistently across languagesin
s.

*Designed an XML schema for the definition of error conditions and for their storage in the logging system.

eImplemented code generators that from the XML error definitions produce IDL definitionsfor the exce%ti onsand
convetr]l ence support classesin the various programming languages, to overcome limitations in the CORBA support for
exceptions.

eImplemented some standard error management design patterns
*Defined how to propagate errorsin asynchronous calls
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Alarm System

* Deals with abnormal situations
— Fault states (FS)
— Range from severe alarms to warning states
» Provides
— FS collection, analysis and distribution, definition and
archiving
— FS reduction
— Dedicated alarm consoles

* Porting of CERN LASER system to ACS

technology
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An alarm system is a cornerstone service in every computer controlled environment.
Its purpose is the natification of exceptional conditions (fault states) in the system requiring an intervention from the staff.

The specifications for the alarm system in the Alma Common Software (ACS) require not only that each alarm has to be
shown to operatorsin a short time, but also that correlated alarms must be "reduced" and presented in compact form in such
away that operators are able to easily identify the root cause for an abnormal condition.

In the development of ACS we always investigate the availability of adequate implementations before writing a service
from scratch. Such an implementation, the CERN LASER Alarm System, devel oped for the Large Hadron Collider, was
fulfilling and exceeding our requirements.

We have therefore started a collaboration with the CERN LASER team to integrate it with ACS.
The Laser implementation uses an architecture similar to ACS but a different set of underlying technologies.

The porting work has consisted therefore in identifying how to replace the original technologies with ACS and refactor
when convenient the code to keep the biggest possible common code base, isolating the access to specific technologiesin
separate interfaces.

LASER is amessaging system; it collects, stores, manages and distributes information regarding abnormal situations called
Fault States (FS). A FSisidentified by atriplet: the Fault Family (FF), the Fault Member (FM) and the Fault Code (FC).
The FF represents a set of elements with the same kind of problems, like power supplies. The FM specifies the particular
instance of an object in the FF, for example a specific power supply. The FC is a code representing a particular problem
occurring in the FM.

From an operational point of view, the alarm service receives FS from alarm sources. Each FSis made persistent and
correlated with other FS previously received. Each FSis defined in the database together with other information, like for
example the exact position of the failing component as well as the name and telephone number of the responsible person
for that particular alarm. The alarm system uses the FS as akey to retrieve such information from the database and build a
new, more complete snapshot of the specific FS. Finally, the alarm service sends this snapshot to the clients, one of which
isthe operator GUI that presents the alarms to the operators that can take the more appropriate action to fix the problem.

When the system is complex, the cascade of alarms produced as the consequence of just a single failure can be huge.
LASER correlates active alarms in order to show to the operators only the root cause of a specific aarm. We call this phase
reduction and it is akey process to help usersin finding and fixing quickly each problem.
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System overview

« A diStribUted, layered Definition Consoles  Alarm Conscles  Admin Consoles  External Clients

system . . T | ﬂ

* Layers communicate via

Client

well-defined interfaces LaoerClont A5
- Resource tiel’ ACS Motification Channel
Dispersed set of sources ay | || Pubisher | procesor || [ lorm
detecting FS changes other | i
. . § Service | Gathering & Receiver
« Business tier g Lltbubon | |perststence serw
Implements business logic
and services feation Channel
* Client tier - (Eessrimay
Dedicated consoles and ; (Trves ) o) feseerso Techical) (Comea
software clients H UsP's
SPIE 2008 — SC-644, An Introduction to Scalable Frameworks for Observatory 78
G.Chiozzi Software Infrastructure

*Resource tier

*Consists of adispersed set of alarm sources
*Communicates with businesstier viathe LASER Source API
*Triggers FS changes
*Sends ‘Keep-alive' /Synch message
«Implemented on avariety of platforms and OS

*Businesstier

«Client tier

*FS collection, analysis and distribution
*FS changes are asynchronously and sequentially collected from sources
«Different techniques are used to reduce the number of alarms distributed
*FS'sare distributed into a hierarchy of domains of interest
*USP monitoring
«‘Watch-dog’ mechanism based on USP's ‘keep-alive’ message
*Alarm console user authentication & configuration
*FSdefinition
*FS definition inserts, deletes, updates
*FSrelationships, used for reduction
*FSarchiving
*FS changes
*FS definition changes

*L ASER implementation Relies on the Java 2 Enterprise Edition (J2EE) specifications, while ACS porting relies on CORBA and ACS
Component/Contai ner

«Java Messaging System (IMS) replaced with ACS Notification Channel wrapped inside a JM S interface
«Enterprise Java Beans (EJB) replaced by ACS Component/Container
«Hibernate/Spring replaced by ACS Configuration Database

*Dedicated alarm consoles and software clients
«Communicates with the businesstier via
*The LASER Client API
*FS changes are sent asynchronously, based on the set of categories and filters passed to business tier
*The LASER Console API
«Login and configuration facilities for the dedicated alarm consoles
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Probably the most important element in an Alarm System is the operator’ s console.

This graphical user interface shall enable the operators to quickly and efficiently analyze the fault states
occurring to identify the ultimate cause and take appropriate actions.

It istherefore necessary to allow alarge degree of configurability and good filtering capabilities.

The development of such a GUI isvery expensive and therefore the possibility of sharing one implementation
across different projectsis very appealing.

Whenever the alarm consol receives an alarm, it showsaline in the table with the label N that means “new”.
When the operator presses the mouse button over the alarm, the N changes to the date when the alarm was
issued by the source. If an active alarm becomes terminate, its entry remains in the main panel until the operator
explicitly acknowledges the alarm by adding a comment.
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Configuration Database

» The ACS Configuration Database addresses the problems
related to defining, accessing and maintaining the
configuration of a system.

» For each Component in the system, there might be a set of
static (or quasi-static) configuration parameters that have
to be configured in a persistent store and read when the
Component is started up or re-initialized.

* This includes the “deployment structure™ of the system, i.e.
which statically deployed Components are part of the
system and their inter-relationships.

This information is used by the Component/Container

infrastructure.
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The ACS Configuration Database addresses the problems related to defining, accessing and
maintaining the

configuration of a system based on ACS.

Typicaly, Componentsin the system have an associated set configuration parameters.

For example, Components representing devices need to define device characteristics, calibration
parameters or limit values.

If we confider for example the Component representing a motor we normally need to be able to
configure information like the brand, the serial number, the limit positions and so on.

Thereisclearly no point in hard coding thisinformation in the code, because devices are replaced and
recalibrated.

We need to put the configuration in a persistent store, keep it under configuration control and be able to
and read it whenever

the Component needs it, for example at startup or initialization time.

The information that needs to be stored in this Configuration Database includes the structure and
deployment of the system, i.e. which Components are part of the system and their inter-rel ationships.
For what concerns system deployment, looking at the CDB only you should be able to see how the
Components are distributed among the Containers and on what hosts the Containers are running.

For Components connected to HW, this would tell you as well what HW you are using and whereitis
located.

Changing the CDB you can move Components around and distribute them in a different way in the
system.
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CDB Issues

I. input of data by the user
System configurators define the structure of the system
and enter the configuration data. Easy and intuitive data
entry methods are needed.

2. storage of the data
The configuration data is kept into a database.

3. maintenance and management of the data (e.g. versioning)
Configuration data changes because the system structure
and/or the implementation of the system’s components
changes with time and has to be maintained under
configuration control.

4. loading data into the ACS Containers
At run-time, the data has to be retrieved and used to

initialize and configure the Components.
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There are 4 different issues related to this problem:

1. input of data by the user
System configurators define the structure of the system and enter the configuration data.

2. storage of the data
The configuration data is kept in a database.

3. maintenance and management of the data (e.g. versioning)
Configuration data changes because the system structure and/or the implementation of the system’s components
changes with time and has to be maintained under configuration control.

4. loading data into the ACS Components
At run-time, the data has to be retrieved and used to initialize and configure the DOs.

A CDB implementation has to take all these issue into account.
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Three-tier database-access architecture
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The architecture of the ACS configuration database is based on three layers:

1. The Database Itself. It isthe database engine used to store and retrieve data. It may consist of a set of XML
filesin ahierarchical file system structure or it may be arelational database or another application specific
database engine.

2. The Database Access Layer (DAL) hides the actual database implementation from applications, so that the
same interfaces are used to access different database engines. For each database engine a specific DAL CORBA
Serviceisimplemented. The DAL isdefined in terms of CORBA IDL interfaces and applications access data in
the form of XML records or CORBA Property Sets.

3. The Database Clients access data from the database using only the interfaces provided by the DAL. Data
Clients, like Components, Containers and Managers retrieve their configuration information from the Database
using a simple read-only interface. On the other hand, CDB Administration applications are used to configure,
maintain and load data in the database using other read-write interfaces provided by the DAL layer.
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CDB Browser
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The CDB browser is a client of the CDB that allowsto:
*navigate through the structure of the database
*browse the values

*Modify values and add new nodes



Notification Channel
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ACS has provides four ways to communicate between components.

*Synchronous method calls.

A client calls a method defined in the IDL interface of a Component. The action is complete when
the method returns.

We handle the special case of calls passing complex data structures using XML serialization
techniques10

*Asynchronous method calls.

A client requests explicitly a service from a Component by calling an asynchronous method defined
inthe IDL interface of the Component and registers callbacks that directly “connect” Component and
client. The method returns immediately and the Component will invoke the callback periodically to
report back to the caller or when completed.

*Notification Channel

A Component publishes data over a CORBA Notification Channel and any interested client
subscribes to the Notification Channel to be notified when data is available. Distinct from the
asynchronous method call, there is no direct “connection” between publisher and subscriber, and the
publisher is not aware of the subscribers collecting published data.

*The special case of publishing huge data volumes is handled in ACS by the Bulk Data Transfer
package. Thisimplements high efficiency transfer of high volumes of streaming data and is based on
the TAO implementation of the CORBA Audio/Video streaming service. Thisis essential for the
ALMA Correlator to send data at rates between 6-60 MB/s to the Archive.

In recent years we have seen the Notification Channel used much more than expected, as a general
mechanism to:

*Synchronize the activity of subsystems by means of the publication of synchronization events
*Publish data to be retrieved by one or many subscribers, not known a priori.

The event names and data structures to be transported are defined in the IDL interface specifications
and can be used with few lines of code. The definition of events at the level of IDL interfaces has
been very important, not only to simplify usage, but also to make it possible to infer the usage of
events using source code and run time analysis tools that we have developed.
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Notification Channel class diagram
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The ACS classes that implement the Notification Channel have evolved together with increasing usage and are
by now very easy to use, hiding in an effective way the underlying CORBA Notification Service.

Most of the use cases we have analyzed we have just the following pattern:
*A data structure is defined

*Whenever datais available the structure isfilled in and published

*One or more subscribers receive the data they are waiting for.

Therefore we have provided in ACS an implementation for this pattern:

*The event data structure isdefined in IDL

*A Supplier class allowsto control easily when datais pushed on a channel:
*Suppliers can create a notification channel

*Suppliers know when a consumer has subscribed to an event type on the channel it publishes
structured eventsto. A “smart” supplier will only publish events (thereby reducing network traffic)
when consumers are subscribed. Only useful in a one-to-many model.

*Suppliers can automatically execute a method if the connection is ever lost.

*Suppliers can destroy a notification channel (coordinating with other suppliers when multiple suppliers
publish on the same channel).

A Consumer class allowsto control easily when datais given to a client
*Subscribe to and unsubscribe from all types of events.
«Filter out structured events they don’'t want to process.

*The consumer doesn’'t have to do anything with the event’sdata. Can literally be used as a notification
mechanism.

«Specify when they are ready to start receiving events.
*Suspend and resume their connections to the channel at any time.

*Notified when a Supplier begins publishing a new type of event and dynamically subscribetoit. The
same holds true when subscriptions are no longer offered.

*Automatically execute amethod if the connection is ever lost (i.e., the channel is destroyed).
See the paper “A CORBA event system for ALMA common software”, from D.Fugate for more details.

Our objective here has been to provide a very simple and standardized interface for the most common use case,
while complex situations can still be dealt directly with the Notification Service APIs.
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Event Browser
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The Event Browser isageneric client for the Notification Channel.

It is capable of subscribing to any publisher and display any kind of event published on the Notification

Channdl.

It istherefore an extremely valuable debugging tool.
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Bulk Data Transfer
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ALMA has very strong requirements for the amount of data that needs to be transported by software
communication channels, in particular from the correlator to the archive (raw data from the antennas
isluckily enough not under software responsibility).

A major development of the last year has been the bulk data system, devoted to the transport of huge
amounts of data and based on the CORBA Audio/Video streaming service specification.

We have implemented very easy to use classes on top of the A/V streaming that implement the use
cases we have identified for ALMA shielding completely CORBA and the details of the A/V itself.

Using this system we avoid the performance penalty introduced by the CORBA communication
protocol, transmitting data outbound directly in TCP or UDP format. On the other hand, we still use a
well defined and standardized protocol for the handshaking and administration saving the effort of
designing and implementing our own proprietary solution.

Unfortunately the only implementation we have available is the TAO C++ implementation. For the
time being we do not have strong requirements to have the bulk data transfer available in Java or
Python. We think anyway that it would be a reasonable effort to port to Java the basic components
that would be needed to have our use cases working.
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ACS Sender Component class diagram

The ACS Characteristic Component relative to the Sender isimplemented as a C++ template class. The template

parameter is a callback which can be used for sending asynchronous data. This callback class provides methods
for sending data at predetermined user-configurable time intervals. To allow sending data in a synchronous way,
adefault callback classis provided, which disables the asynchronous mechanism.

ACS Receiver Component class diagram

The ACS Characteristic Component relative to the Receiver isimplemented also as atemplate class. The
template parameter in this case is a callback class, which has to be provided by the user and must be used to
actually retrieve and manage the received parameters and data stream (see description in the next section).
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Notification and Bulk Data vs. DDS

limitations

« We are evaluating DDS (in the scope of the
E-ELT and SPARTA)

« DDS is very promising as a replacement for
both.

 Notification could probably keep almost the
very same interfaces
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We are well aware of the fact that both Notification Service and Bulk Data have limitations.

For exampl e the naotification service:
* Has performance limitations due to the service architecture with a central delivery point

* Does not allow to retrieve historical values. Thisis bad for clientsinterested in slowing published information
like status: how can a client coming up late get to know what was the last published value?

The Bulk Datais based on a specification that is essentially implemented only by TAO and with limited
maintenance and support. We need to look at something that would be better maintained and supported
providing at least the same level of performance.

From the analysis done until now on DDSfor the E-ELT and SPARTA projects, we believe that integrating
DDSinto ACS to replace the notification service should resolve all these problems.

The basic DDS architecture and the quality of service control features it provides would allow usto solve all
above mentioned problems even keeping for the Event Channel the same interfaces.

With respect to CORBA Notification, Publish-Subscribe is more efficient in both latency and bandwidth for data
exchange because it is designed as a pure data-centric model.

Specific features of DDS include:

* A lowest-latency, best-efforts delivery mechanism.
* QoS poalicies for predictable delivery.

* QoS policies for resource management.

* Status notifications.

DDS has the ability to utilize low latency transports (for example UDP instead of TCP) to further minimize end-
to-end latency. It optionally supports predictable operation with

guaranteed delivery.
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Summary: services

 Services as provided by generic middleware
systems (like CORBA) are still too general
* It is very convenient to tailor the services to
our application domain
— by identifying typical usage patterns
— providing very simple wrappers for application
developers to use such patterns
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Every distributed application in our domain needs several or all the services described in the previous slides.
Generic middleware infrastructures, like CORBA, provide typically al of them and often many more.

But what they provide istypically very generic because it shall be usable in many very different application
domains and by projects with different objectives and programming standards.

It isvery convenient to select the “best way” to use the services according to our project constrains.
Oncethisisdoneg, it is possible to provide higher level wrappers that make using the services in thisway very

easy.

The underlying middleware technology can be very well hidden behind simple APIs, so that functional
application devel opers can use them forgetting about technical concerns.

In ACS we have been following this approach for al the services we are using.
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8 — High Level Framework
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Even more high level?

* We have a framework but
there are still too many
ways to draw the
architecture of the system.

» Take decisions, restrict the
paths, show the “best
way” for our domain

» Leave alternatives open

£ 8 6 6L LTI EL M SL

We will discuss examples T

from ACS
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We have up to this point identified a very powerful and generic framework, providing a number of basic
services tailored to our need.

But still thisistoo generic: we can still put together these building blocksin many different ways and probably
different developersin the team will take very different roads to the solution of similar problems.

To isolate as much as possible the application devel opers from the technical concerns, we need to provide also
solutionsto typical architectural problemsin our domain and give them aframework closer to the “final”
system. The technical framework team has to identify the “best way” among the possible solutions and provide
high level framework elements that make very easy to use this now standard solution.

The “best way” always depend on the specific application domain and therefore the choices done at this level
always depend on two opposite forces:

*Make it general, so that it applies to awider application domain

Make it very specific, so that it fits very well and easy into a problem

This necessarily leads to compromises.

In the design of ACS we have been and are driven by the following considerations:

*Our domain is the whole Observatory software. Not just the Control System or the Data Reduction Pipeline.
We need to satisfy the needs of all our stakeholders.

*Sometimes the requirements in the sub-domains are very different and thereisno “one size fitsall” solution.
Then we have to provide alternative solutions, but mutually coherent and compatible.

*Some cases arereally “specia”. We cannot completely close the door. We have to alow going via special
paths when justified.

In the next pages we will discuss some packages in the ACS high level framework that allow developersto write
in an easier way and with better integration and maintainability applications for our “observatory domain”.
Depending on the time available we can analyze more or less of these examples and discuss them.

The experience from the VLT and the Instrumentation Common Software framework show that there are also
other areas where ACS could provide high level framework facilities with great benefit for the implementation
of optical telescope instruments and applications. Remind that after all ACS development has been driven by the
needs of the ALMA radio interferometer.



State Machines

« Control applications are ... generate FSM from model

very naturally mapped ) i
into state machines o = el -

* Implementation and 2
maintenance of state > ) e s
machines by hand is — —
expensive ﬂ

* Modeling tools are good
in helping defining state Executable
machines

Therefore.....
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Control applications are in principle very naturally mapped into state machines.

Clearly the direct control of physical devices needs to be modeled using finite states machines, but also the high
level coordination between the subsystems of a tel escope or the sequencing of observations would be very
conveniently described using state machines.

Unfortunately in our community (at least according to my experience) we have often designed state machines
for the description of devices but we have very seldom implemented real state machines explicitly. In most of
the cases we have implemented them implicitly using flags and if switches.

Thisis probably due to the fact that there is no long tradition of easy to use FSM frameworks and to the fact that
maintaining FSM implementations based on state/transition tables is normally quite difficult.

In the last few years the situation has improved and there now for example a very good open source FSM engine
that is part of the Boost C++ library: Boost Statecharts.

But the best approach seems to be in any case that of being able to model the state machinesin a UML modeling
tool and generate from that the skeleton of a complete application where only the specific code for actions and
transitions needs to be implemented.

This can clearly only work if it is possible to round trip the development, i.e. if it is possible to go back to the
model, modify the states and generate a new version without losing the previously implemented actions and
transitions functions.
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ACS Master Component
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ACS provides one example of the usage of State Machines.

The ALMA architectureis based on subsystems that are “running” independently.
Thisis avery common architecture and appearsin many other scientific (and industrial) facilities.
The subsystems are managed (started, stopped, checked for health) by an high level coordination application.

This applications does not want to know about the peculiarities of each subsystem and want to be able to tread them all in the
same way (well, there are always exceptions, but forget about them for the time being).

It is therefore reasonable to define a standard interface that each subsystem has to implement and expose to the administrator.

The most natural type of interface for such purpose is a state machine and therefore we have specified subsystem level state
machine and implemented it in a Master Component.

Thisisabig help in getting a system that is easy to integrate even if the subsystems are developed by completely
independent teams, asit isthe case for large international collaborations.

The overall Technical Architectureis specified:

*The system is divided in sub-systems

*Each sub-system has a Master Component implementing a standard State Machine

*This Master Component coordinates the activity of the other Components making up the subsystem
*The Administrator Component dealsin a standard way with all the subsystems

The ACS Master Component is the implementation of a specific State Machine pattern: the state machine is specified, the
developer has to implement the actions.

But, aswe have said already, State Machines can (and should) be used much more widely. Therefore, instead of hard-coding
the implementation of the ACS Master Component, we have rather devel oped a general solution based on code generation
directly from aUML model. Actually, we haverealized in the last year that there are very good reasons and even good tools
to generate code from UML Models.

Introducing more extensively code generation from models (mode! driven development) would strengthen the separation
between technical and functional concerns by |etting application developers design their component and data entitiesin UML
using standard commercial tools and have al the code generated up to filling in the body of the functional operations.

Task of the technical team is then the implementation of suitable code generators.

94



VLT WSF framework
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Alsothe VLT has put an effort in the last couple of years into providing a frameworks for building applications
based on finite state machines.

The WSF framework, already mentioned above and presented at the conference, provides these capabilities.
An application based on WSF can be built using one of the following methods:

*Manually: by extending the classes provided by the framework with the missing states, events, transitions,
actions and data handling classes.

*Using code generation from atext file: by writing the description of the state machine in atext file (using WSF
notation), generating the state machine (using WSF tools), and adding the code for the implementation of
actions and data handling classes

*Using code generation from UML models: by modeling graphically the state machine using one of the
supported UML modeling tools (Rational ROSE, Enterprise Architect or MagicDraw), generating the state
machine (using WSF tools), and adding the code for the implementation of actions and data handling classes.

The development process of a W SF application is based on iterations over the following steps:
el dentification/refinement of the state machine model and data classes
*Generation from the state machine model of the state and event classes using WSF tools

eImplementation of the action and data classes

Sequence diagrams can be used to identify the events processed by the components and the actions performed
by the components. Events and actions characterize the dynamic behavior of a component and therefore are the
first input in the definition of the state machine model.

Model and implementation of data and action classes can be refined in several iterations until the application
reguirements become stables. The code generation step can be repeated at any time since the generated code
does not overwrite the code written by the developer.

Changes to a WSF based application can be grouped into two categories:
*Changes that affect states and transitions
*Changes that affect action and/or data implementation

In the first case, the application can be updated simply by re-generating the code from anew model. In the
second case the modification affects the code written by the devel oper, therefore the devel oper has to fix the
action/data classes.

Future developments of WSF foresee a refactoring by separating the Platform Independent Model (PIM) part
from the Platform Specific Model (PSM) part to facilitate the porting of WSF to ditferent software

infrastructures. Thiswould alow the convergence of this framework with the FSM implementation developed in

ACS and described in the previous slide. 95



Devices:
Component-Property-Characteristics pattern

+ (Characteristic) Component:
base class for any
physical/logical Device
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+ Each Component has
Properties (e.g. status value,
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* Characteristics of Components s |
and Properties Ln

(Static data in Configuration DB,
e.g. units, ranges, default values)

« GUIs

What about Data Distribution (ACS Events and/or DDS)?
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On the Control System side the concept of a Software Device representing physical or logical devices of the system such as
antenna mount, antenna control unit, correlator, etc is very common.

It istherefore useful to take aformal design pattern for this model and implement it.
We have taken the Characteristic Component-Property-Characteristics pattern.
The Deviceitself is mapped on a Component in our Component/Container model.

Each Characteristic Component implements operations and is further composed of Properties (representing monitor and
control pointes).

A Characteristic Component can a so contain references to other Components to build hierarchies.

Both Characteristic Components and Properties have specific Characteristics, e.g. a Property has a minimum, a maximum,
units.... Tbhe colmmon behaviour of Characteristic Component and Property has been factorized in the Characteristic Model
common base class.

Values of the Properties are updated asynchronously by means of monitor objects.

While there are in principle an infinite number of Component types, for example one for each physical controlled device,
there are very few different Property types

Underneath this high level pattern, design patterns for synchronous and asynchronous value retrieval/setting, monitoring and
archiving or alarms are part of the Property definition

The implementation of this pattern provides once more a clear path for the Technical Architecture of the Control System.
The developers responsible for the implementation of the control system have to:

eldentify the hierarchy of logical and physical devices

eldentify the operations allowed on each device and the monitor and control points. Thisisthe IDL interface of the devices.
eImplement the code for the operations.

«Implement the hardware access layer (using the Bridge pattern) to connect the properties with the actual hardware

The framework provides them with standardized configuration and deployment means, automatic monitoring for telemetry
and many other facilities.

In our on-going evaluation of DDS we see that very similar concepts could be conveniently applied also for values published
in a data distribution model.

In this case the role of the property would be taken by the data “topic”. “Topic properties’ would be in general de-coupled
from components representing devices, but still we would have general facilities to analyze the characteristics of such
properties, monitor them (for example to make trend plots or attach callbacks) and interact with them (for example
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This slide shows the decoupling between the high level concept of Property and the access to the actual
hardware.

While the implementation of Propertiesis completely general, access to hardware is delegated to asimple
DevlO class according to the Bridge design pattern.

The DevlO class needs to implement read and write functions to access the hardware.

When a property isinstantiated, it receives a proper DevlO implentation that enable it to retrieve and store (if
writable) values in the hardware.

There are already many DevlO implementation available, some developed for ALMA and some developed from
other projects:

*Memory location (ACS defaults implementation)
*CAN bus access (ALMA)

*Socket generic interface (APEX)

*RS232 (OAN)

*PC Joystick (HPT)

*Webcam (HPT)

*CCD cameras (FBIG, Finger Lake) (HPT)
*Heidenan Encoder board I1K220 (HPT)

*Motor Control Board (HPT)

*CCS Readl time database (VLT)
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Despite the original idea of providing with ACS a standard framework for developing GUIs and the persuasion
of the ACS team that thiswould be a very important infrastructural element, the priority for the ALMA project
was not high enough to be able to allocate the necessary resources. All projects using ACS have been therefore
let free to develop GUIs according to their preferences.

The ABeans GUI building framework (that was conveniently aware of the Component-Property-Characteristic
paradigm) was initially integrated into ACS, but evident performance limitations doomed its acceptancein the
community. A set of graphical Java Beans was implementing the most useful widgets for the development of
Control System applications, aware of the concepts of Components, Properties and Characteristics. At the same
time a code generator produced Java Beans based on the IDL interface of ACS Components. These Beans were
therefore automatically integrated in any Visual Builder. For example, a Gauge widget could be associated to an
ACS Property to display the value, draw trend plots and configure automatically itself based on the
Characteristics stored in the Configuration Database.

ALMA has opted instead for developing GUI applications in Java using the standard Java libraries and
interfacing to ACS directly with the ACSA Java APIs.

Other projects are using the Qt libraries from C++ or Python code, preferring them to Javalibraries.

A prototype of interface between ACS and LabVIEW has been also implemented by two projects using ACS
(see appendix).

There are two approaches that we are now considering very promising:

« Eclipse Rich Client Platform (RCP). Eclipse is now amain player in the arena of application development
environments, and the RCP application framework is getting more and more momentum as the infrastructure for
the development of GUI applications. Are working on a prototype (the re-implementation of the ACS Event
Browser, currently written in Python) and the results are very promising. More over the accelerator community
hasinitiated a project for the development of control-specific GUI components for Eclipse RCP applications
(Control System Studio, www.cs-studio.org). CSSiis currently integrated with EPICS and TANGO and could be
probably integrated with ACS as well, although we are careful in putting resources into this projects because of
the Abeans experience.

« LabVIEW. More and more projects are using LabVIEW for developing applications and the GUIs devel oped
with the tool arein general very appealing. The E-ELT is seriously evaluating LabVIEW at different levelsin
the control system, together with ACS. It is therefore natural to think of making good use of LabVIEW GUI
capabilitiesin connection with ACS applications. We have now taken the existing ACS/LabVIEW prototypes
and revise them on the light of the features provided by the new LabVIEW releases. The E-EL T technology
demonstrator includes the development of new prototypes. Thisis avery interesting approach, because it allows
also the hardware and el ectronics engineers (often accustomed to use LabVIEW) to build they own control
panels.
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Code generation

 code generation in ACS is widely used:
— uniform framework throughout different modules
— reduction of routine tasks
— avoiding typing errors
— better focusing on functionality of application
* Model Driven Architecture?

— creation of an application (skeleton) from IDL-file or,
better, UML
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In ACS many repetitive tasks are handled with the help of code generation tools.

For example:

« error system interfaces and implementation classes are generated from an XML specification
* XML binding classes

* documentation

* state machines

Still it has been pointed out several times, in particular by new users, that implementing ACS components
requires editing of several files and that thiswork could be drastically simplified by code generation with a
noticeable improvement in the slope of the ACS learning curve.

Together with the ALMA High Level Analysisteam we think that code generation from UML will be able to
relieve the programmers from alot of code editing, since a hig part of the Component’s code can be easily
generated. Thisis an important step toward Model Drive Architecture.

More over there are now powerful toolsto implement efficiently code generation solutions.

In particular we rely alot on the openArchitectureware code generation framework:
http://www.openarchitectureware.org/
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acsGenerator

» acsGenerator: let’s start form IDL specifications:
— application skeleton
— Configuration Database
— creation of automatic tests (TAT)
creation of an engineering GUI (optional)
» contributed to ACS by the HPT team
* written in Python
+ use of templates in editable textfiles
+ easy to adapt to different styles
+ easy to customize (resource files, templates)
+ improved maintenance and flexibility
+ separation of parsing and code-generation
» can be extended for creation of Python and Java skeleton
» command-line and GUI version
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A first step in this direction has been the implementation of an ACS component generation framework that starts
from IDL component specifications.

The acsGenerator has been implemented by the HPT team and contributed to the ACS code base and isavery
good exampl e of the advantages of using the same software infrastructure in multiple projects.

Now the code acsGenerator is used by various projects, although it has not been yet integrated in the official
distribution of ACS.

A further step would be generation of this same code starting from a UML model, including the generation of
the corresponding idl interface description.
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Component simulation framework
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The functional entities collaborating in an ACS application are the Components.

The interaction between components is based on the IDL interfaces and/or on the notification channel.
No client is ever aware of the actual implementation of a component it interacts with.

There are very good reasons to be able to simulate a complete component:

«In adistributed development the code base cannot be all the time synchronized. Therefore a subsystem team can desire to have
astable simulation of components developed by other subsystems.

<At any intermediate time between releases, some pieces of code contributed by the various subsystems are only partialy
implemented. Another subsystem might need functionality that is not available yet.

«It also happensthat the intermediate code does not perform according to specifications. This might confuse the devel oper of a
subsystem using it. When running tests or when implementing modular regression tests, who is at fault in case of problems?

It istherefore very difficult to get the integrated (but partial) system working.

Itisalso very difficult to identify the subsystems responsible for bugs and work around them to proceed with the integration
tests.

It is therefore much quicker to get the complete system exercised if the capability to fake the missing software functionality is
available.

If possible, modular regression tests should only rely on internal code and simulation for external Components.

Dueto the fact that only IDL interfaces can be seen by clients of Components and not the actual implementations, the most
effective means of simulation for ALMA is at the Component level. That is, it should be possible to specify to the Container
that the implementation for a given Component is a simulated Component factory. Also, because of the very nature of CORBA
and IDL interfaces, clients using the Component will never know they are not using the real deal. Component implementations
are hot-swappable within the ACS framework.

The ACS Component simulator allows devel opers to configure the behavior of simulated Components in four different ways —
completely self-implementing components, configuration files found in the ACS CDB, aGUI, and an API.

The ACS Component Simulator has the following characteristics:
« It isimplemented in Python

*Usesthe CORBA IDL Interface Repository (IFR), a CORBA service which stores and retrieves IDL, it is possible to
accurately create method return values for the devel oper without their input.

«Can be executed from an interactive Python session. Thisimplies the developer can swap out entire method/attribute
implementations with ease.

«Instead of simulating components at the interface level where all component instances of a given IDL type behave identically,
we simulate at the named component instance level. This means that each simulated component of a given type can be
configured to behave uniquely which is different from the three proposals.

«Using native Python methods, it is possible to dynamically create the implementation of any IDL interface. Thisimplies
simulation could indeed occur at the component level without making modifications to the container.

«Using native Python methods, it’'s possible to read method/attribute return values in the form of XML strings from the ACS
CDB.
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Summary: High Level Framework

* Identify and implement:
— High level Technical Architecture blocks
— Standard domain design patterns
— Standard paths when many alternatives are available

* Do not rule out special cases

* What would be needed for our community?
— Telescope framework
— Instrumentation framework
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The developers of a system should be confronted only with the choices connected to the functional aspects of
their project. But most frameworks leave still too much freedom of choice because are thought for “any kind of
application”. Devel opers then risk to get distracted by technical choices.

In abig project, different subsystems might take different paths leading to waste of development resources,
duplication of effort and interface problems.

It makes therefore sense to identify and implement, on top of the all purpose framework, solutionsthat are still
genera for the domain of application and for the whole observatory, although give a clear path to the
developers.

What to do (or to reuse) at thislevel isreally amatter of choice, but there are plenty of examples.

Thisisaso an area where “functional developers’ can feel to be strongly limited in their freedom of choice by
the “technical team”.

Thisis often done with agood will and at the advantage of the global project: often it is better a sub-optimal
solution working for everybody than many optimal but different solutions that will cost immediately for
duplication of effort and in the future for maintenance.

Nevertheless, there are really cases where searching for a*“ special solution” is not avoidable.

The experience of the VLT shows that a complete framework for the control system of (optical) observatories
should include a

« Telescope Framework, like the one that has allowed the VLTSW to be used in many very different telescope
mounts.

« Instrumentation Framework, like the one that allows efficient development of the control software for the very
many instrumentsinstalled on the VLT and VLTI units.

ACS does not provide at the moment any of the two.

The various tel escopes using ACS have reused the basic telescope software initially implemented for the ALMA
antennas or have implemented a new telescope control software from scratch.

ALMA and the other projects using ACS do not have multiple instruments and therefore would not benefit
significantly from an instrumentation framework.

But it is clear from the E-ELT evaluation and from eval uation prototypes implemented with ACSfor the VLT
that the implementation of such frameworks would become a priority at the moment ACS would be adopted by
amajor optical telescope project.
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9 — Development support
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Dealing with big projects

— Ensure that installations are “identical”
— Integration issues

— System deployment issues

— Maintenance issues

— Personnel turnover
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When there is a big project that spans a whole observatory, is developed across many development sites and
spans over many years (or combinations of these characteristics) there are many sources of problems:

*The many development machines have to be aligned with the same software at the same level. The framework
we have described consist of very many pieces from many sources and it is very easy to encounter
incompatibilities between these pieces and the underlying operating system. It is therefore necessary to
centralize the definition of the “mix that works’ and ensure that everybody gets the right cocktail (possibly
being able to check if a configuration is clean or not)

«All the pieces developed in the different sites and by different devel opers have to come together and be
integrated. There should be standard ways of testing the functionality of each single component autonomously
and automatically and of integrating them and test them as a unit. If there is an integration team, very often it
does not have the knowledge needed to thoroughly test and debug the single components.

*The deployment on the operational system involves many hosts and possibly many sites. Downtime due to
deployment problems is very expensive and therefore it isimportant to have precise deployment and rollback
procedures.

*Debugging an maintaining the system can be very expensive.

*One should get the architecture, design and implementation right in the first place. Thereforeit isvery
important to have means to evaluate (or, better, measure) the quality of the work done and to test it.

*When problems will come out or changes will be needed it will become very important to have a
system that is homogeneous and understandable. If the same patterns and tools are reused over and
over, everybody in the team knows where to putsits hands.

Factorizing common code in a single place (the framework) allow to “fix one and cure all”
.... Continues on next page
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Software Engineering practices

I .

Software Engineering and Quality Assurance activities:
*Software Process
*Document Reviews, Format, Templates
*Development Environment
*Integration Procedure
*Coding Standards
*Code Inspection
*Configuration Management
*Testing framework and assessment
*Change Management
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All these troubles can be mitigated by adopting Software Engineering practices.

Balancing the cost of the overhead introduced with the complexity of the project and the benefits that can be
reached will dictate up to which point it makes sense to push for formal practices.

But in any case it is counter productive to simply state rules on paper and ask people to follow them.

Itisessential to provide tools and support so that the adoption of the practices and their verification is
transparent or becomes second nature.

... continues from previous page

For a system that will take many years to implement and that will be operated for many years by different
people than the developersit isimportant not to underestimate the problem of personnel turnover. Personal
ownership of the code shall be avoided, because if the person disappear the knowledge will be lost and
intervening on the code will require expensive reverse engineering. Founding the architecture on standardized
patterns and pushing for factorization and reuse (coupled with code review and team rotation) is of great help.

All these considerations typically appear as requirements for the system to be built.

106



Tools to support SW lifecycle and QA

Tools to build and integrate the software (make, ant)
Code configuration control tools (CVS)
Regression testing infrastructure

Problem tracking system to track faults and change requests (Action

Remedy)

Tools to produce documentation of software (both inline and online —

doxygen, TWiki)

6.  Automated night reporting infrastructure to run regression tests and
check standards compliance (ESO NRI) on the complete codebase.

7. CASE tools (UML Modeling, Editors, Quality Control)

8.  Tailored standards for most of the process phases and deliverables

oL —
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And what they trandlate into for practical usage
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Can the Framework help?

» Accretion point for factorization

* Distribution vehicle for:
— Upgrades
— Controlled versions of the software
— SE support tools

— Development and deployment environment
configuration
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Can the adoption of an observatory wide software framework help with these issues?
Clearly yes.

Aswe have said already, first of all the whole system structure becomes much more uniform and consistent,
because everybody is pushed to use the same architectural and design pattern.

Then new solutions of general usage can be integrated in the framework to be reused by other groups.

But it isalso agood idea to integrate in the distribution of the framework also all the tools for software
engineering we have described in the previous pages and the configuration of the development environment.

If the installation of the framework on a freshly installed system produces a working environment for
devel opment, testing or deployment it is much easy to have reproducible installations.

Thisapproach isagain a“global gain” paid at the expenses of personal freedom for the devel opers and therefore
itisimportant to find the right balance based on the characteristics of the team and of the project.
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Questions (& Answers)
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10 — Wrapping up
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ACS global architecture

4 - Hi-level UIF Scripting  ACS Application  ACS Installer ..mare to
APls and tools libraries Framework come...
5 - Integrated
APls and tools
v ACS C: Serializati Archiving G d Alarm  Sampling N
ki onFlugs System System System 1mmm:amnwu
" Astro libraries
2-Core ACS C c Data Error Logging Time CommarciliSaied
components Database channel System System System
Device Drivers
Developm CORBA Middleware ACE
1-Base tools Sithiols
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The ALMA Common Software is an example of the approach described in the previous pages.
This package diagram is asimplified version of the complete ACS Package Diagram from the Architecture document

The architectureis divided in layers and each layer can use the packagesin the same layer and in the layers below.
This allows us to keep under control the dependencies between packages.

An important aspect isthat the “basetools’ layer is athick and reliable foundation based on CORBA and other “off the shelf” publicly
available tools and software packages.

Thisincludes or defines as pre-requisite for ACS installation:

« A standardized set of development tools (like compilers, Makefile extensions, installation procedures and tools, JUnit and other
test support tools, emacs configuration and so on)

* CORBA implementation and services for the different languages
* ACE and other public domain libraries used by ACS and available for application developers.
It isamain objective to use whenever possible readily available packages and not to re-implement servicesthat already exist.

But for each service/package, ACS provides and “interpretation” of the way we want it to be used in the terms of design patterns and support
code implementing the design patterns to makes it easy to use our “interpretations’. This reduces the learning curve and makes the code more
uniform across the distributed devel opment sites.

In some case there is really no ready made implementation that we can use and therefore we provide our own implementation, but keeping an
eye at the OMG specifications.

We also recognize that this approach heavily constrains the freedom of the devel opers to choose between the different possibilities of using a
service; thereforewe allow to “drill ahole” in the upper ACS layers and use directly the underlying layers when thisis justified by areal
need.

Typically such holes are later on closed again by incorporating the new solution into ACS itself.

An example of thisisthe ACS “Datachannel” that wraps the CORBA Notification Channel to provide very easy access to the push-push
model.

The ACS distribution is used also to package and distribute other APIs and tools that are not part of ACS and that are not used by ACS, but
are used by anumber of ALMA subsystems and that is therefore convenient to distribute as one single entity together with ACS. This can
include for example FITS libraries, Astronomical Calculation libraries or device drivers.
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Development

1
I
I
1

I

* Developers write Components
and GUI clients in Java, C++, or
Python.

« ACS provides an integrated build
environment based on application
code modules.

* Communication from an
application to a component, and
among components, uses ACS
interfaces.

* No thinking about starting and
stopping components, or on which
machine they should run later.
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Deployment

Computer1 .
» One or more containers get

- assigned to each computer.

- » Components get assigned to

containers.

Computer2 Computer3 » This location information is
stored centrally in the
Configuration Database
(CDB).

« Other configuration data for

containers and components is

also stored in the CDB.

» Different deployments for unit

tests, system tests, and various

stages of the productive system.
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Details on container location information and container startup:

« for the system to work, it is good enough to start containers by hand on any machine. They dynamically add
themselves. Thisisonly done for tests though.

* Inthereal ALMA, the central starter application “ Executive” starts containers on various machines, before any
application software gets run. Exec maintains a configuration file that assigns containers to machines.
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Runtime

Computer2

Computer1

* ACS containers start and stop

components (“lifecycle

management”)

* containers provide components
Computer3 and clients with references to
other components.
» the “manager” is the central
intelligence point that keeps the
system together. Components
never see it directly.
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ACS installations and projects
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ACSisfully based on public domain software and isin an advanced development phase.

The development is backed by abig project (ALMA) but thereis interest in awider community of users.

Therefore it has a good potential for being adopted by other projects.
ACSisinstalled in all ALMA development sites, but it is also used by a number of other projects.
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The path to Heaven?

Development support/ SE

High Level Framework

Services

Component/Container

Object Middleware

~ P~

SPIE 2008 — SC-644, An Introduction to Scalable Frameworks for Observatory
G.Chiozzi Software Infrastructure

116

Let’s summarize the steps that have led us to the definition of the elements needed by a framework that could be

used for the whole software infrastructure of an observatory.

The elements are listed down up in the order in which we have encountered them following our logical thread.
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Who should try this path?

* New big projects:
— Select a core technology

— Assign a technical team to the development of the high
level framework

* New small projects
— Select a recent but stable solution (ACS like?)
— Collaborations
» Upgrade projects
— Select a recent but stable solution
— Introduce it in selected areas and let it percolate
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Who should try the path of adopting an observatory wide framework like the one described?
| think that every project would find big gains but using different approaches.

A new big project cannot probably avoid to adopt such a solution.
To get the better results, atechnical architecture team has to be established.

The team has to select a core technology among the palette of currently available recent but mature choices
(avoiding risky cutting hedge technology). Starting from scratch does not make sense.

Then the technical team has to work on defining and implementing the high level framework, trying mainly to
do a good work of integration of existing solutions and implementing only what isreally necessary.

A new small project should fully adopt an existing solution built by a big project or by a collaboration, trying to
behave somehow as a subsystem of the collaboration.

Thiswould allow avery fast startup, with extremely rapid progress on the solid ground of proven solutions.

A small team should concentrate the effort on the functional aspects and not on the technical framework.
Nevertheless some specific technical development will be very likely necessary, because each project has some
very specific requirements. Thiswork could be done in the form of collaboration with the big project.

What about already existing systems that need to be refurbished and upgraded?

There are many around and in most cases the owners cannot afford to put the resources for developing a
completely new system.

But hardware becomes obsolete and cannot be replaced, software maintenance becomes expensive and localized
interventions are unavoidable.

In such acase it will be probably most cost effective to take arecent but stable complete solution, just likein the
case of small projects. Then apply the solution to the critical parts, for example replacing subsystems whose
hardware must be replaced. Or to the parts that have proven weaker and harder to maintain. Then build bridges
between the old and new system to allow them to interoperate.

If the system to be upgraded is big the devel opment team can probably give an important contribution in form of
ideas and collaborations for the development of new high level framework features to the team devel oping the
adopted framework.
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Contour conditions

e Itisn
project.
— Different background, cultures, experience.
» What contour conditions are necessary?
— Small motivated team
Or

— Strong management and control procedures
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Experience showsthat it is not easy to get accepted by the devel opers the introduction of aframework like the
one described in this course.

The problem is that each developer or group has it own different background, experience and culture.
As said, the framework has the purpose of driving the devel opers toward narrow but safe technical paths.
Many developers would see thisalimitation in their freedom, and thisis certainly partialy true.

Other would say that they can do the job much better for what they specifically need. And thisis also often true.

The problem is that the advantages can be seen much better from above rather than from the perspective of the
single developer:

Non optimal solutions traded for uniformity and coherence
Freedom traded for maintainability
Focus on functional work

Therefore the success is bound to one of two contour conditions:

*The project is done by a small motivated development team that is convinced of the advantages of the
framework solution and can push it up

*A strong management imposes the solution to the whole team and establishes control procedures until the
project is sufficiently advanced that the gains have become clear to everybody.
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This conference contains a number of papers with more details on ACS. Y ou can look in particular at the following papers:
*Application development using the ALMA Common Software [6274-06]
eIntegrating the CERN Laser Alarm System with the Alma Common Software [6274-07]
*Bulk Data Transfer Distributer: a high performance multicast model in ALMA ACS [6274-54]

*ACS Web Page: http://www.eso.org/projects/alma/devel op/acs/

The ACS Web Page contains alot of documentation, a detailed architecture description and references to other papers and
documents.

« C.Britton, IT Architectures and Middleware, Addison Wesley, 2001 ISBN 0-201-70907-4

Thisisavery interesting (and reasonably thin!) book focusing on requirements and principles of distributed systems, offering
an overview of middleware technology alternatives.

*CORBA/OMG web page: http://www.omg.org/

The OMG web page is the starting point to find the CORBA specifications, although what can be found thereistoo
superficial or too detailed for a useful introduction and startup. Better to look in other pages or books.

*D.C.Schmidt and TAO web page: http://www.cs.wustl.edu/~schmidt/TAO.html

Page full of papers on distributed design patterns, CORBA design, high performance and real time distributed
systems.D.C.Schmidt is one of thereal gurus of thefield

*M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns - Patterns for Enterprise, Realtime and Internet Middleware,
Wiley & Sons, to be published in 2004

This very good book describes the most important patterns used in Object Middleware and compares CORBA, .NET and
WebServices.

*M.Henning, S.Vinoski, Advanced CORBA Programming with C++, Addison-Wesley, ISBN: 0-201-37927-9

Like the Bible: very old, but still the essential one.

eCommunications of the ACM, October 1998. Special issue on CORBA

Old but very interesting collection of introductory papers on CORBA
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» The material for the course comes from the experience of:
— ALMA project and in particular the whole ACS team
VLT project
— ESO Software engineering team, that works across projects.
— The first E-ELT steps
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The material for this course comes from more than 10 years of experience in the development of Common
Software but, most important, of discussionswith all people involved in developing and using this software.

All this people has therefore given an important contribution and many have also provided slides or ideas for
slides.

First came the VLT project, wherein particular K.Wirenstrand, R.Karban, A.Longinotti have to be thanked for
the past work together and for the discussions we have all the time to compare VLT, ALMA and to see how the
software world is evolving.

Inthe ALMA project everybody has shaped a piece of ACS, but a particular thank for the discussions and slides
goesto H.Sommer, J.Schwarz, A.Farris, M.V oelter and the other members of the ACS team. Many slides about
ACS come from ACS presentations, papers and courseware prepared by many ACS team members. All these
presentations are available form the ACS web page.

The collaboration with M.Plesko and the Joseph Stephan Ingtitute in Ljubljianafor the design and devel opment
of ACSisalso of great importance.

The definition of processes and standards is essential for the success in the usage of a software infrastructure.
Therefore | value as very important the collaboration with the Software Engineering team in ESO (in particular
M.Zamparelli and G.Filippi).

In the last few year the contribution from the other projects using ACS has been extremely important, both in
terms of feedback and active contribution. Some slides are also derived from presentations given at the ACS
workshops by the teams using ACS and contributing “from outside” to the ACS development. Also in this case
the original presentations can be found in the ACS web page.

The discussionsthat are now taking places to define the initial architecture and software infrastructure for the E-
ELT are bringing new ideas, fresh energy and a critical analysis of al what was done until now. Here R.Karban,
A.Wallander, B.Bauvir, M.Kiekebush and P.Duhoux are playing a mgjor role.

The architecture of the software for observatoriesis converging toward a common model. The discussionswe
are carrying on since a bit more than a year with several people (some listed above) from many projects are
having avery relevant role and | hope that these will trigger extensive collaborations.

Many ideas for the middleware slides come from presentations on the web (cited in the bibliography).
In particular the ACE/TAO web page provides plenty of excellent material and good inspiration.
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Course Evaluation

Take your time to properly fill in the
course evaluation
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CORBA details
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Overview of CORBA

* |t simplifies development of
Repository distributed applications by
automating/encapsulating

* Object location

+ Connection & memory mgmt

inarms Object * Parameter (de)marshaling
cperation]) (Servant) » Event & request demultiplexing
e R, * Error handling & fault tolerance
/ 1 * Object/server activation
« Concurrency
m“?l*ﬁ * Security
ol IDL ORB
STUBS INTERFACE Object Adapter
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This slide summarizes the overall architecture of the core CORBA.

From the logical point of view, aclient get hold of the object reference of an Object it wants to talk to, for
example using the Naming Service, and then can invoke its operations.

Theinterface of the object is known to the Client viathe | DL interface published by the object.

Under the hoods, the Object Request Broker (ORB) transports a client request to a remote object an returns the
result. It istypically implemented as a set of client and server sidelibraries.

Interoperability is warranted by the General | nter-ORB Protocol (Gl OP) and by its TCP/IP incarnation called
I1OP.

All vendors are bound to support [1OP but can also implement their own protocol, for example for performance
optimization or to exploit specific hardware like ATM networks. Thereis also a standard secure protocol based
on SSH. Thisallows to exploit network capabilities transparently do the application devel opers.

On the servant side the Object Adapter provides the environment in which servantslive. In particular it takes
carefor:

*Mapping of object references into implementation

*Object lifecycle

*Threading policy

Compiled interfaces are provided by the stubs and skeletons generated by the | DL compilers (more on this
|ater).

Interpretative interfaces are handled through:

I nterface Repository. Repository of the IDL interfaces known to the system. Used for language independent
introspection.

<Dynamic I nvocation I nterface (DI1) used on the client side to dynamically generate calls to object operations.
Necessary for generic applications and for the implementation of CORBA inside interpreted languages.

*Dynamic Skeleton I nterface (DSI) used on the servant side to dynamically implement objects that incarnate a
given IDL interface. Necessary for example to implement generic servants like protocol converters or object-to-
relational database interfaces.
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CORBA server characteristics

1 -

‘server” we

L=

* When we say
machine

* One or more CORBA server processes may be running on a
machine

» Each CORBA server process may contain one or more CORBA
object instances, 1.e. “servants”, of one or more CORBA interfaces

» A CORBA server process does not have to be “heavyweight”
— e.g., a Java applet can be a CORBA server
* Clients always talk explicitly to servants, and not to servers.
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When we consider the traditional client-server model, we think of a*“client process’ requesting a service from a
“server process’ (or, sometimes, a server machine).

Obviously, aso with CORBA the communicating entities are processes running on distributed hosts, but the
communication abstraction is higher level.

A CORBA process providing a service to a client contains one or more CORBA object instances, called
“servants’.

Each servant implement one or more CORBA IDL interfaces and clients do address and communicate explicitly
with the servants.

The“server” is only the process inside which the “servant” lives and the client is not aware of that.
Clients dways talk explicitly to the servants using the object reference in a fully object oriented model.

Deployment of “servants’ in “servers’ can be dealt with in away completely transparent both to clients and
servants themselves, as we will see later on.

Aswe have seen and we will see with more details later, CORBA also usestheterm “service” to denote
fundamental, almost system-level servicesto OO applications and their components. Services are specified by
means of interfaces, implemented by “servants’ and deployed within “ servers’.

Therefore, make sure to keep always in mind the difference between:
*Servant

*Server

*Service
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Interoperable Object Reference (IOR)

An Interoperable Object Reference is the distributed computing equivalent of a C++ pointer:
— An 1OR uniquely identifies one object instance
— 1ORs can be uniquely mapped into a string and back for easy and portable storage.
*  AnIOR contains:
— A fixed object key with the fully qualified interface name and an instance identifier
— Transient information such as the host and port of its server
An IOR can be persistent
— Some CORBA objects are transient, short-lived and used by only one client
— But CORBA objects can be shared and long-lived
»  CORBA objects can be relocated
— The fixed object key of an object reference does not include the object’s location
— CORBA objects may be relocated at admin time or runtime
— ORB implementations may support the relocation transparently
CORBA supports replicated objects
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Servants are addressed by means of their object references or, more specifically, by their Interoperable Object
Reference (IOR).

An IOR uniquely identifies one object instance, |.e. it allowsto locate the object in the network and identify
what interface it implements.

Interoperability iswarranted by representing |ORs as strings that can be easily transported and used on
heterogeneous systems.

CORBA object references can be persistent.
Some CORBA aobjects are transient, short-lived and used by only one client.
But CORBA abjects can be shared and long-lived

business rules and policies decide when to “destroy” an object

IORs can outlive client and even server process life spans.This means that once a client has obtained
the IOR for an object, it can continue to use it also after arestart of the server, unlike a normal C++
pointer.

CORBA objects can be relocated
The fixed object key of an object reference does not include the object’ s location
CORBA objects may be relocated at admin time or runtime
ORB implementations may support the relocation transparently

CORBA supports replicated objects

IORs with the same object key but different locations are considered replicas. The same IOR can
contain “alternative solutions’ for getting in contact with the desired servant.

The flexibility of the IOR specification is one of the keysto CORBA interoperability and scalability.
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CORBA Location Transparency
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A CORBA Object can be local to your process, in another process on the
same machine, or in another process on another machine
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In order to invokes operations on a servant, a client uses the CORBA reference to obtain alocal Stub object (1.e.
an object in its own language and instantiated in its own process).

Then it makes native language calls to the Stub.

The Stub and the underlying ORB map these callsinto calls to the real Servant, but the client is not aware of
where the Servant resides.

It can be alocal object aswell, an object in another process on the same machine or an object in another host.

There is some overhead in this mapping, but good ORB implementations make this overhead minimal and calls
tolocal Servants can be reduced to afew levels of indirection, avoiding any real inter-process communication.

But this transparency makes it much easier to scale systems and optimise performance by re-deploying Servants
on separate processes and hosts or repackaging together Clients and Servants that have frequent interactions.
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Stubs & Skeletons

client program - object
* \ 4 } implementation

call d
N ——— method
language \ y
mapping )
operation language mapping

signatures entry points

tubs and Skeletons are automatically generated from IDL interfaces
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The Stubs and the Skeletons contain all the code needed to interface the user code with underlying ORB and
CORBA machinery.

Often the code in the Stubs and Skeletonsis ORB dependent and you cannot normally use the code produced by
the IDL compiler of one CORBA implementation with the ORB libraries of another one, but thisis not
important because;

the interfaces of Stub and Skeleton are based on the formal IDL to language mapping and therefore the user
code does not change changing ORB (unless you use vendor extensions)

«the communication between ORBs s also interoperable (unless you use vendor extensions)

This allowsto mix and match CORBA implementations based on your needs and to replace them with others.
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IDL details

SPIE 2008 — SC-644,
G.Chiozzi

An Introduction to Scalable Frameworks for Observatory
Software Infrastructure

130

130



IDL simple data types

* Basic data types similar to C, C++ or Java
— long, long long, unsigned long, unsigned long long
— short, unsigned short
— float, double, long double
— char, wchar (ISO Unicode)
— boolean

— octet (raw data without conversion)

any (self-describing variable)
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IDL complex data types

string - sequence of characters - bounded or unbounded
— string<256> msg // bounded

— string msg // unbounded

wstring - sequence of Unicode characters - bounded or
unbounded

sequence - one dimensional array whose members are all
of the same type - bounded or unbounded

— sequence<float, 100> mySeq // bounded

— sequence<float> mySeq // unbounded
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IDL user defined data types

* Facilities for creating your own types:
— typedef
— €num
— const
— struct
— union
— arrays
— exception
* preprocessor directives:
#include, #define, macros
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Operations and parameters

» Return type of operations can be any IDL type
(but in ACS we do not allow references to other
components)

» each parameter has a direction (in, out, inout) and
a name

» similar to C/C++ function declarations
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CORBA Services
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Object Management Architecture
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objects CORBA facilities CORBA facilities
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Object Request Broker
® CORBA services Y
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The OMG has defined on top of the core CORBA architecture an Ob{ect Management Architecture (OMA? with the purpose
of providing an architecture and interoperability foundation to allow the development of plug-and-play software.

The basic ideais that when applications provide basic functionality, they shall provide it via standard interfaces.
In thisway:

*Multiple, interchangeable implementations of the same functionality can be interoperable but still be characterized by
differencesin performance, price or adaptation to run on specific platforms.

*Specialized high level components, developed independently and for different purposes, can still be made interoperable
b%gausethey ugethe same p%l ette of basic b%ildingetg)locks (ir%/terfaces). Parp P

Applications - even if they perform totally different business tasks - share alot of common functionality: objects notify other
objects when something happens; object instances are created and destroyed and new objects' references are passed around;
operation must be made secure and transactional. Beyond this, applications within a business domain (tel ecommunication,
trangportation,...) share even more functionality. The OMA abstracts out this common functionality from CORBA
applicationsinto a set of standard objects that perform standard, clearly-defined functions.

As it has been discovered at a high price in the past years, it is not sufficient to write software using object oriented
techniques or in any case specific |anguages to make it reusable and interoperabl e with other software. Two pieces of
software can work together only if théy expectations on the environment they want to live in are compatible. Just liketwo IC
chips can live on the same motherboard only if they expect the same kind of ‘power supply.

The OMA defines:

+CORBA Services (COS) _ ) _ o
Spedf)t/etéasc services that almost every object needs. This part of the OMA started first and is quite well developed and
suppor

*Horizontal facilities i o . L
Provide intermediate |evel services common to all applications. They can substantially help to develop applicationsin any
domain but are not strictly necessary.

*Vertical domain facilities. ) o o ) ) ) o

Are specifications for services useful in specific application domains and are defined by Domain Task Forcesinsidethe
OMG with focus on a particul ar application domain, such as telecommunication, Internet, manufacturing and so on. Thereis
an OMG interest group on real time control and there could be one on Astronomy or, more in general, experimental facilities.
Some of the facilities developed here have found a widespread usage very well outside the original application domain.

Thisdistinction is useful to clarify who inside the OMG is responsible for the specification of a service or of afacility.

But from the point of view of users of services and facilitiesit is not really important and there are now vertical domain
facilities (like the Telecom Notification Service) that can be actually condidered for any purpose of usage plain CORBA
services.

Therefore in the coming pages | will not distinguish and only talk in general terms of CORBA services.
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CORBA services

* Defined on top of the core CORBA

* OMG defines IDL interfaces and semantic to
services in order to ensure interoperability

« To be implemented as standard CORBA objects
by vendors

» Vendors choose what services to implement
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The services are defined on top of the ORB.

They are defined by means of formal specification documents that include IDL interfaces and semantic
description in English text. They shall be implemented as CORBA Objects (or appear as internal CORBA
Objects, |.e. CORBA objects that are not accessible from outside the process but only to the local objects).

The vendors or CORBA implementations are free to choose what services they want to implement. But if they
implement a service, they are bound to implement it according to the specifications. Some widespread services
are implemented by every vendor, but some other are extremely specific and seldom implemented.

But it isimportant to notice that it isin many cases possible to select any implementation of a service and use it
with another ORB, thanks to the fact that interfaces are through IDL and the interoperable CORBA
communication bus.
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CORBA services

» Naming Service * Security Service

« Event Service * Trading Service

* Notification Service * Transaction Service

* Logging Service *  Query Service

* Audio/Video Streaming Service « Relationship Service

» Life Cycle Service » Externalization Service

* Concurrency Control Service
+ Time Service

+ Property Service

» Persistent State Service
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What followsisalist of CORBA serviceswith abrief description:

Naming Ser vice -- Supports both persistent and non-persistent hierarchical mappings between sequences of strings and object references. In
addition, the Interoperable Naming Service defines a standard way for clients and serversto locate the Naming Service, aswell as any
other CORBA service.

Event Service -- Supports decoupled communication among multiple suppliers and consumers using the standard GIOP/11OP protocol .
Notification Service -- Isamore powerful form of the Event Service that supportsfiltering and correlation.

L ogging Service -- Allows applications to send logging records to a centralized logging server.

Audio/Video Streaming Service— Definesamodel for implementing an open distributed multimedia streaming framework.

Lifecycle Service -- Provides a standard means to locate, move, copy, and remove objects.

Concurrency Service -- Provides a mechanism that allows clients to acquire and release various types of locks in adistributed system.
Time Service -- Provides globally synchronized time to distributed clients.

Property Service -- Supports the association of name-value pairs with CORBA objects.

Persistent State Service -- Provides away to make a service persistent. PSS presents persistent information as storage objects that residein
storage homes.

Security Service— Providesidentification and authentication of users and objects, authorization and access control, security auditing,
security of communication between objects.

Trading Service -- Implements a mapping between attribute constraints and sequences of object references that match those constraints.
Thereforeit supports the finding of CORBA objects based on properties describing the service offered by the object

Transactions -- Coordinates atomic access to CORBA objects
Query -- Supports queries on objects
Relationships -- Provides arbitrary typed n-ary relationships between CORBA objects

Externalization -- Coordinates the transformation of CORBA objects to and from external media
TAO for example implements most of these services, but other vendorsimplement only a subset.

In the following pages we will look at some examples with more details, with the purpose of understanding what Services are and what they
can bring to the developers.
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Naming Service

* maps logical names Naming

to server objects em?)@\b

» references may be

hierarchical, chained 2.Resolve
. 1.Create binding
* returns object :
Client

reference to Server

requesting client ~
* allows federation \\____#,P

3. Use target object
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The naming service is a simple locating service that allows clients to look up an object location using a name as
akey. The name can be specified in a human-readable stringified name format or in araw name format.
Typicaly, atree-like directory for object references is used, much like afile system provides a directory
structure for files.

Before a client can ook up an object, the association between the object location and its name must be created.
This association is known as an object binding, and it is normally made by a CORBA server.

Then a client can resolve the name asking the Naming Service by name and receiving back the reference to be
used.

The Interoperable Naming Service (INS) is a URL-based naming system on top of the CORBA Naming Service,
aswell as acommon bootstrap mechanism that |ets applications share a common initial naming context.

Naming Services can be federated. A federated service provides a single logical service to clients, but consists
of anumber of physical servers. Thisallows scalability and redundancy of the system.
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Events and Notification services

* Asynchronous messaging Supplier I
*  Publish/subscribe Supplier Supplier

paradigm %

 Decouple suppliers and '““‘xﬁ\ III"'\.Ipull /”
consumers of information PETS\  pull
.“A//

* Push and pull models ew————
* Notification adds to vent/Notification

: Channel

Event Service: )
— Filtering " T pull
— Structured Events Push — pusiy’
—  Sharing subscription e E— s | Y Consumer

information Consumer C
) . onsumer
— QoS properties
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The standard CORBA operation invocation results in synchronous execution:
*Both client and servant must be active

*The client blocks until the operation returns

eCommunication is point-to-point

For many application it is required to have asynchronous communication, eventually with multiple suppliers and

consumers.

The Event Service provides amodel for asynchronous communication based on the “ publish/subscribe”
paradigm with an Event Channel that plays the role of a mediator between suppliers and consumers of events
and encapsulates the queuing and propagation semantics.

Some examples are;

A telemetry system where telemetry datais published and displayed on many consoles, on top of being
archived in a central database.

*An alarm system, where alarm conditions can be published by many objects and need to be collected in a
central service and dispatched again to many clients.

«Synchronisation events emitted by one object and used to synchronise the action of many other objects. For
example a “target reached” event used to start exposure and data collection.

The Notification Service is mostly an extension of the Event Service, but provides very important features.

Filtering is extremely important, because without that the Event Service is actually a broadcast mechanism: all
subscribers receive al events published on the channel and have to select themselves the onesthey are really
interested in.
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Logging service

» Logging is fundamental for distributed systems, but
complex:

Persistent log records
— Log record filtering

Log forwarding for scalability and federation
— Support for QoS associated with the Notification Service.
— Administration interfaces

» Based on Notification Service
* Implements CCITT X.735 recommendation
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A centralized logging system is essential for the devel opment, monitoring and administration of a distributed
system.

Events happen in many different hosts and processes and need to be correlated to be able to understand the inter-
relationships between things occurred in different places.

Therefore devel opers want to be able to log actions and events and collect them in a central place.
It must also be possible to store thisinformation persistently for later analysis.
Also “telemetry” information about the behaviour of the system has the same typical life cycle.

A logging system isreally acommon service needed by any application and is also very complex if we take into
account the requirements for scalability and reliability.

The OMG Telecom working group has defined a logging service supporting the CCITT X.735 recommendation
and base on the CORBA Notification Services that is now widely used also outside the Telecom vertical domain
and has been implemented by various vendors.

Scalability is based on forwarding specifications that allow log objects to forward messages one to the other
building hierarchies and redundant nets.

Quality of Service specifications and a thoroughly defined Administration Interface take care of the reliability
requirements.
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Summary: CORBA Services

* OMG defines standard specification for common services that go
across domain and application borders

» Vendors provide implementation of the service

» These two steps guarantee to the user:
— Scalability
— Reliability
— Interoperability
* Pick the right service for your requirements:
— Asynchronous communication
— Security
— Persistency
— Load balancing
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Here | summarize once more the main design goals of CORBA Services.

These goals map well with the requirements that have led us to identify the need for adopting a Middleware.

By picking the right services from the palette of available specifications we can find a ready made solution for
wide sets of application requirements.

The fact that the services have been specified at OMG consortium level guarantee that they have been
thoroughly thought and are coherent and consistent.

Although often the specification appears complicated and over killing, implemented in house what provided by

a Service results very often in over simplification of the problem and under estimation of the requirements with

the result that it is often necessary to radically extend and change the architecture of the “home brewed” service
during development with inconsistent and often not scalable and unreliable results.

The genera (but not absolute) interoperability allows to select the implementation that better satisfies the
requirements and there are often available “light implementations” that are simpler and thinner than the full
blown implementation at the expense of features (sometimes unneeded in the application domain).

Even in the case where it is not possible to use an existing implementation, it is often very productive to start
from the OM G specification and take it at the basis for a home made partial implementation.
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ACS features
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ACS to LabVIEW Interface

» Invoking ACS functions directly from the LabVIEW
application

ACS Devices

\ Bemhard Lopez, EGO
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LabVIEW to ACS Interface

» Using an Interface Component based on socket
communication or invoking LabVIEW functions (DLL)

MATIONAL
INSTRUMENTS

i LabVIEW deviOSock -
| 1 Control - Slider
Application | SocketComm. [#][][=] 000 [[miw)
o
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LabVIEW DLL Dl
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Bemhard Lopez, EGO
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ACS to LabVIEW Implementation

at LabVIEW
e Nodes (CIN)

» ACS functions are incorpo ,.ted
applications via Code Inter
* Why CIN and not DLL?

— Global variables
— Standard hook-functions
« Using several CINs makes the development straight-forward:
— cinlnitClient
— cin<device>Get
— cin<device>Set

— cin<device>Func<function>
Bemhard Lopez, EGO
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ACS to LabVIEW
Implementation ont)
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PowerSupply GUI
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PowerSupply Block Dlagram
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Alarm system details
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ACS Alarm system technology

Remote invocation

LASER
Java RMI (via J2EE)

ACS
CORBA

Asynchronous
messaging

SonicMQ (via JMS)

CORBA Notification Service (via ACS
Notification Channel)

Persistence of
configuration

RDBMS (Oracle)

XML (via ACS Configuration Database)
and/or ALMA archive

Temporary state storage

Oracle object cache

In memory Hash table (prototype)

Persistent state storage

RDBMS (Oracle)

y tr: ti | datab (via
Prevayler)

Marshallingfunmarshalli
ng for on-the-wire
presentation

XML (via Castor)

XML (via Castor)

Marshallingfunmarshalli
ng for database

Hibernate

StringBuffer/ XML DOM

persistence
Server container J2EE application server (Oracle ACS container
Application Server, via Spring
Framework)
GUI framework for alarm | NetBeans NetBeans

console
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Resource tier

» Consists of a dispersed set of sources

» Communicates with business tier via the Source API
— Triggers FS changes
— Sends ‘Keep-alive’/Synch message

» Implemented on a variety of platforms and OS

IMS
Laser-Source API
(G/C++/Java)

PVSS Industrial| [Accelerator| [Technical| [ Control
Systems Devices Services SW

Resource

USP's
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The resource tier is composed of the sources of alarms, i.e. applications that monitor the hardware and the
software to detect malfunctioning. Each alarm source has a definite set of FS whose state can change from
active to inactive. The sources can be written using different programming languages and run on different
platforms.

The Laser-source API has been written to connect the sources to the businesstier and is very small in order to
be as simple as possible for the user. The APl iswritten in javaand in C++ and runsin all software
environments used at CERN like embedded and real time system, different operating systems or hardware
platforms and so on.

The sources build a message containing the FS and an action, like active or terminate. The APl embeds the
message into a structure and publishes the message in a IM S topic to the businesstier.

Each source periodically sends a heartbeat to the alarm service to notify that it isin a healthy state.
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Business tier services

« FS collection, analysis and * FS definition
distribution — FS definition inserts, deletes,
— FS changes are asynchronously and updates
sequentially collected from sources — FS relationships, used for
— Different techniques are used to reduction

reduce the number of alarms FS hivi
distributed . archiving

— FS’s are distributed into a hierarchy — FSand FS definition changes
of domains of interest

* Source monitoring

. \ . Bsdms
*Watch-dog’ mechanism based on \ N
source’s ‘keep-alive’ message

' . g A Publisher L Processor AR Alarm
* Alarm console client configuration hid
BI| seice | |Comemte [ eer
@ Service Persistence Service |
/—CE") EJB Container
[ xmL
€ S \dms
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The businesstier isthe core of the alarm service:

elistens for FS changes and heartbeats from the sources

ereads the further data of areceived aarm from the database

ereduces or masks the FS depending on the knowledge of the environment and the current status of the system
epersiststhe FS

etraces and archives the changes of the FS

«allows management changing and definitions of FS without stopping the alarm service

cauthenticate users on the client GUIs

All these services are realized by EBJ and the communications between the upper and the bottom layers happen
through a definite API.

In order to maintain easy and short the Laser-source API, the sources send to the business layer only the triplet
describing an alarm with the time of its creation. For each alarm received, the businesstier reads its complete
definition from the database in order to present to the operators a compl ete snapshot of the situation, its possible
solution and consequences. Table 21 shows some of the information stored in the database for each alarm.
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Close up on FS definition

» FS static information » FSrelationships
- Id Source
* Fauit famiiy (System name) + Unique name
+  Fault member (Identifier) +  Brief description

+ Fault code

—  Priority

(Problem description) + Connection timeout
+ Definition responsible

— Information — Categories
« (Cause + Connect alarms to nodes and/or
«  Action leaves in the category tree
+ Consequence —  Multiplicity reduction
— Piquet information + Create the multiplicity parent and

+ Help URL

set the threshold value

+ Piquet GSM + Connect children alarms to the

+  Piguet email
Definition responsible

parent
—  Node reduction
+ Select the node parent

— Location + Connect children alarms to the
parent
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Close up on FS reduction

*  Multiplicity reduction *  Node reduction
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One of the most relevant parts of the businesstier isthe reduction of the alarms. In a complex environment
where afailure can cause a cascade of secondary alarms, it is very important to show to the operators the root
cause of a problem. Operators are also confused when the operators GUI shows a great number of repeated
aarms of the same type. Alarm reduction addresses both these problems.

To perform the reduction, the alarm system reads from the database a set of dependency rules between alarms
describing their correlation. Whenever the service receives a FS change, it appliesthat set of rules and
eventually marks some alarms as reduced.

All the alarms, both reduced and not reduced, will be sent to the client because some clients can be interested in
receiving al the alarms regardiess their reduction status: it is the GUI that hides the reduced alarms to the
operators depending on the specific configuration.There are two types of reduction rules:

node reduction: when it is known that a failure in an equipment A triggers afailure aso in the equipment B then
the latter alarm is reduced, with the effect that only A, the root cause of the FS, is shown;

multiplicity reduction: when there is a great number of alarms of the same type then these alarms are reduced
and a new alarm is shown with the effect to reduce the number of alarms shown in the client GUI.
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Client tier

* Dedicated alarm consoles and software clients
» Communicates with the business tier via
- The LASER Client API
* IS changes are sent asynchronously, based on the set of categories and filters
passed to business tier
— The LASER Console API

+ Login and configuration facilities for the dedicated alarm consoles

Definition Consoles  Alarm Consoles Admin Consoles  External Clients

|-
& —— .
Laser-Client APl
I f‘* m (Java)
g lIMS
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Theclient tier is composed of java applications that consume the data published by the businesstier. The client
connects to the business tier by means of the Laser-console API. The businesstier supports both login and
configuration facilities.

Once connected, the clients can access services of the businesstier by means of the Laser-client API. ThisAPI
alowsthe clients to access active FS after sending a message to the service with a definition of which kind of
messages the client isinterested in. At this point the communication between the core service and the client
proceeds asynchronously with the alarm service sending the alarms selected in the first message.

Three GUIs devel oped with Netbeans are part of the client tier: the definition console, the alarm console and the
admin console. The definition console and the admin console allow the user to define alarms, sources and
categories as well as create accounts and configurations for the operators of the alarm console.

Whenever the alarm consol receives an alarm, it shows alinein the table with the label N that means “new”.
When the operator presses the mouse button over the alarm, the N changes to the date when the alarm was
issued by the source. If an active alarm becomes terminate, its entry remains in the main panel until the operator
explicitly acknowledges the alarm by adding a comment.
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Other services and packages
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All Control Systems need to provide telemetry data to monitoring clients and send it to an archive for offline
analysis.

Since we map monitor pointsinto Properties, we can implement a generic monitoring system in the properties
as a standard service for all developers.

Archiving is enabled/disabled and configured on per-property basis. ACS Properties publish their value on a
specific ArchivingChannel notification channel as structured events, by using the ACS Logging System.

The parameters for data publishing are defined in the Configuration Database and it is possible to specify, ona
per—Property base:

*Archive priority
Max time interval between two archive submissions
Min time interva between two archive submissions

*Min value change that forces an archive submission
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Entity data: XML value objects

Why Value Objects?
* Less remote calls -> Better performance

* Run-time independence between subsystems
increases reliability

remote ‘ Transport | value
o - rvalie - object
object = — — Dby value 1
\ [obj.getFod()
I [ 1 I
— Ob = v " —
F&etkoq, Logic
Subsystem| Subsystem?2
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The Acs Architecture requires the ability to send Entity Data as V& ue Objects from one subsystem to another or to retrieve
Entity Data from the Archive Subsystem and useit locally, until it is time to commit the changesin the archive.

Thie applies, for example, to Persistent Objects, like “User”, “ ObservingProject”, “ CorrelatorConfig”

XML asthe Format for Value Objects

We have chosen to use XML as the format to be used for the serialization of Value Objects.

Using CORBA and different programming languages, the only alternative would have been CORBA valuetype.

XML serialization has the following advantages over CORBA valuetype:

* XML is suitable also for Data Persistence

* XML isusable also on transport protocols different from CORBA, like http or email.

* XML Schema allows stronger typed declarations with respect to IDL and allows to use versatile automatic validation tools
* CORBA valuetypeis not supported by many ORBs

* XML can be easily manipulated “by hand” or using many publicly availabletools. Thisis particularly important for a step-
by-step development of the software, where advanced manipulation tools will be developed in |ater phases of the project.

With the advantages of XML data added to CORBA's data types, ACS lets the devel oper make the best choice
for every parameter in every component method in the IDL:

*To send simple data by value, the built-in data types of CORBA can be used, with the advantage of efficient
binary transport;

+For more complex, usually hierarchical data, the data definition can be provided outside of the IDL in an XML
schemafile, and has to be referenced in the IDL. This option is expected to be chosen for nested structures such
as an Observing Project and its Scheduling Blocks, where the size is of the order of afew 100 kB.

XML transport isrealized in IDL using an ACS-defined CORBA struct as a vehicle; it contains a string field for the
seriaized XML, plus complementary administration meta data, such as a unique ID.

Asarule of thumb, large data structures should be broken up into smaller groups, each described by its own XML schema.
For example, ALMA's Observing Project, the Proposal, and the Scheduling Blocks are each modeled separately. A balance
must be found between quickly accessing large parts of the datatree in one call, and not transporting too much data at atime
when only a part of it is needed.
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Transparent XML Integration

Flat-XML APl | ! !
seen from outside ./

Mapping code
layer

“ Transparent-XML
API implemented
by component
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XML transport isrealized in IDL using an ACS-defined CORBA struct as a vehicle; it contains a string field for
the serialized XML, plus complementary administration meta data, such as a unique ID.

XML binding frameworks are used to generate native language binding classes from XML schemas.

Binding class instances can form in-memory representations of any XML document that complies with the
schemas used for the code generation. Binding classes offer static methods to instantiate objects from XML, and
methods to serialize binding objectsto XML. They also allow validation against the schema.

Applications are written against the type-safe accessor and manipulator methods of the binding classes.

Every component implements one interface that is defined in CORBA IDL; the methods of that interface may
use XML data as string parameters or return values.

However, without additional support, both the client and the component implementation would send or receive
XML data as strings rather than as

trees of binding class instances, even if they use type-safe binding classes inside their implementations. ACS
and the ORB could only guarantee that a valid string is returned. At both ends of a remote call, the applications
would be taking on the burden of performing their own marshaling and unmarshaling.

ACSresolves this problem by integrating transparent marshaling and unmarshaling of XML binding classesin
the container:

* The“XML" component interface isthe IDL interface seen from outside the container. XML data used as IDL
method parameters appears as plain CORBA strings. The Java container provides an implementation of this
interface.

*The “transparent-XML" interface is a Java interface which ACS generates using a custom IDL compiler. It
resembles the XML interface, except that Java binding classes are substituted for XML-strings. The component
implements this interface and receives an incoming XML transfer object as atree of Java binding classes;
likewise, it returns binding classes wherever XML is expected onthe IDL level.

*The mapper classis part of the container and unmarshals parameters from XML stringsto binding classes and
back.

A component that uses another component can retrieve from the container a transparent-XML view of the other
component. Thus both in implementing its own interface and using other components, a component is provided
with the “illusion” of sending around Java binding classes. In fact, for calls between collocated components, the
container isfree to shortcut XML serialization.
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Threading Support
* Many Components have a
multi-threaded structure ThreadMarager
*create<ThreadClass>()
* Management of threads was a  como=n ooy
source of problems S
r'J
* Developed easy-to-use e - !
threading classes: e
— Override a run() method ot
— Use the thread manager
° Based on AC‘E Threads in ControlLoopThread OneShofThread
C++, concurrent library in e e
Java
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Many Components, in particular in the area of the Control Software, have a multithreading structure.
This means that there are threads of execution, like control or monitoring loops, that are intrinsically
associated with the Component, i.e. are started when the Component isinitialised and stopped when

the Component is taken down.

We have seen that the management of such threading Components was a source of problemsin the
application code, with threads |eft hanging after Component destructions and other misbehaviour.

We have therefore decided to provide support for well behaving thread design patterns, in particular
for C++ and Java.

Each Component now has an associated pool of threads. The ContainerServices provides
Components with a Thread Manager object that can be used to get hold of Component-specific
threads. This makes it possible to tie the lifecycle of the threads to the lifetime of the Component. It
isactually very important to make sure that when a Component is de-activated all related threads are
cleanly terminated. Failure to handle this situation might introduce large instabilitiesin the system,
often difficult to diagnose. Problemsin this respect can come from the integration in Components of
functionality coming from 3rd party packages: in this case we cannot rely on the Thread Manager to
handle threads spawned by the external libraries.

In C++ we have built threading classes based on top of the very good APIs provided by the ACE
framework. Sub-classing and overriding one method is sufficient to have a thread function executed
once (in order to have one-shot asynchronous action) or in a repeated loop (as in the implementation
of acontrol loop). Complete management of the thread (start, stop, resume, etc) is possible.
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ALMA Software Engineering details
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Integration Layers :

I1

Compiles and links successfully.

12

Adoption of approved Coding Standards.

[3

Unit or Integration test passed.

14

Test Coverage is sufficient.

I5

Run-time memory checks ok.

16

Computation of Complexity and other
metrics.

SPIE 2008 — SC-644,
G.Chiozzi

An Introduction to Scalable Frameworks for Observatory
Software Infrastructure
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This nomenclature is only introduced to explain the next slide
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Quality Assurance Tools

Linux
C/C++ Java Python
11 acsMakefile acsMakefile acsMakefile
[2 |Codewizard / |JTest PyLint
Splint
[3 |[TAT, CppUnit |TAT, JUnit PyUnit
14 | Purify JProbe NA
I5 | Purify/Valgrind | JProbe NA
[6 |CMT++ CMTJava NA

G.Chiozzi

SPIE 2008 — 5C-644,

An Introduction to Scalable Frameworks for Observatory

Software Infrastructure
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For each category and programming language the corresponding tool is shown
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Automated Inspections (NRI)

* Build reports (GO/NO-GO)

» Tests (availability, execution results GO/NO-GO, coverage, memory
behaviour)

* Coding Standards (ALMA, MISRA, Motorola, Scott Meyers, Sun)

+ Inline documentation sufficiency

» lines of code (total, per language, per module, production vs test code)
+ Algorithmic Complexity (McCabe)

+ module dependency diagrams

* SPR statistics, number of commits, number of unused files

» Java duplicate classes verification

» Events and Channels in use

+ metrics on design quality (Robert C. Martin, for Java)
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Introducing NRI: what doesit bring
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NRI

source

reports

Inspection

J |

(dynamic inspection machines)
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Generic layout of NRI. Dynamic NRI in particular is to be considered as an early warning system.
NRI is aso the glue which holds together all the tools mentioned above (and probably more)
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S TEST OUTCOME DETERMINATION

Compiled Test DIR ;)
. Purify
/ Makefile ;)

_ath,
UNDETERMINED

UNDETERMINED

test target

ELG tesﬂ

test output
success / \
failure FAILED "~ PASSED
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For each and every blue box there may be an outcome of success or failure. The specific path followed
determines whether the TEST will be considered FAILED, PASSED or UNDETERMINED.
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Data archival for trend analysis
http://websqa.hg.eso.org/alma/snapshot/
ACS ARCHIVE CONTROL CORR EXEC ICD OBSPREP  PIPELINE  SCHEDULING  TELCAL

Total Modules 56 6 34 49 3 8 3 2 9
Build FAILED 1 0 13 8 0 0 0 0 0 0
Test FAILED 2 3 0 3 0 0 2 2 0
Instrumentation
Failed 0 0 0 0
Test
UcNSI)ETERM[NEI) 7 1 16 12 0 0 1 0 0 0
No Makefile 0 0 0 0 0 0 0 0 0 0
Missing Test
rm. oy 6 | 4 30 0 8 0 0 0 3
Test TIMED OUT 0 0 0 0 0 0 0 0 0
Test CORE
Test CORI 0 0 o 0 0 0 0 0 0 0
Test PASSED 41 1 0 3 30 0 0 1 6
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To make the point clearer, thisis a snapshot from amoment in time last year.
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The ACS community

N 30m (Spain)

Sardinian
Radio
Telescope
S (ltaly)
. L
ALMA _
(Chile) § HPT N
Hexapod ANKA (Germany)

Telescope
(Germany — Chile)
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